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Abstract
Field localization by nanostructures illuminatedwith laser pulses of well-definedwaveform enables
spatio-temporal tailoring of the near-fields for sub-cycle control of electron dynamics at the
nanoscale. Here, we apply intense linearly-polarized two-color laser pulses for all-optical control of
the highest energy electron emission fromSiO2 nanoparticles. For the size regimewhere light
propagation effects become important, we demonstrate the possibility to control the preferential
emission angle of a considerable fraction of the fastest electrons by varying the relative phase of the
two-colorfield. Trajectory based semi-classical simulations show that for the investigated nanoparticle
size range the directional steering can be attributed to the two-color effect on the electron trajectories,
while the accompaniedmodification of the spatial distribution of the ionization rate on the
nanoparticle surface has only aminor effect.

1. Introduction

Intense laser pulses with tailoredwaveforms have proven to be a powerful tool for the control of electron
dynamics in atomic,molecular, and solid targets [1–12]. The laser electric field of such pulses exerts a force that
varies on the attosecond time scale for visible light and enables the steering of electronmotion on sub-cycle time
scales and on nanometer spatial dimensions or even below [13–17]. In case of nanostructuredmaterials, the
spatial variation of the strongly localized optical near-field provides an additional control parameter for both
electron emission and acceleration [17–20]. The coherent control of electron emission and accelerationwith
carrier-envelope phase (CEP)-controlled few-cycle laser pulses has been investigated for isolated nanospheres
[19, 21–23], metal nanotips [24, 25], and surface assembled nanostructures [26–28]. Characteristic nanoscale
phenomena that contribute to the strong-field photoemission from thesematerials include (i) the transition
fromponderomotive to sub-cycle electron acceleration forfield localization below the scale of the electron
quivermotion [29], and (ii)field propagation induced directionality of the energetic electron emission as
demonstrated for nanospheres with diameters approaching thewavelength of the incident light [19].

Here, we extend the near-field control of the photoemission fromnanospheres to themulti-color regime.
We demonstrate that spatio-temporal tailoring of the near-fieldwith the two-color phase enables all-optical
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control of the electron emission direction. Thewaveformof the combined two-color driving field
w h w j= + +w( ) ( )[ ( ) ( )]E t E t t tcos cos 2 r depends on the relative phasej ,r and the intensity ratio

h = w w/I I .2 The linear response of a nanosphere to laser light can be accurately described by theMie solution of
Maxwell’s equations. For a spherewith diameter d subjected to an incident fieldwithwavelengthλ, the impact of
propagation effects on the near-field distribution can be characterized by the dimensionlessMie parameter
r p l= /d . For nanoparticlesmuch smaller than thewavelength of the laserfield r ( )1 , the near-field
distribution shows a dipole-like character withmaximum field enhancement along the laser polarization
direction (figures 1(a), (c)). As the size of a nanoparticle becomes sufficiently largewith an associatedMie
parameter r > 1, seefigures 1(b), (d), excitation of higher ordermultipolemodes results in a shift of the region
ofmaximalfield enhancement in the direction of light propagation. Thus, for an appropriately sized
nanoparticle illuminatedwith linearly-polarized two-color laser pulses consisting of the fundamental wave and
its second harmonic (ω/2ω pulses), the near-field distributions of theω and 2ω spectral components exhibit
different spatial near-field profiles and,most importantly, the points ofmaximum enhancement (hot spots) are
spatially separated. This is illustrated infigure 1 for a 300 nmdiameter SiO2 sphere, where the distributions of
the near-field enhancement differ significantly for excitationwith the fundamental (figure 1(b)) and the second
harmonic (figure 1(d))fields at 780 nmand 390 nm, respectively, and evidenced by the angle q ,field

max where
maximumenhancement is observed. The fact that both the positions and extensions of the hot spots differ
substantially for the two spectral field components (as depicted infigure 1(e))motivates the possibility of all-
optical control of the directionality of the near-cutoff electron emission. In this study, we demonstrate feasibility
of this idea and explore how tailoring of the temporal waveformof the incident two-color field via its relative
phasejr and intensity ratio h translates intomodifications of the angular distributions of the yield andmaximal
energy of electrons.

2. Results and discussion

The experimental setup for velocity-map imaging (VMI) of the electron emission is shown in figure 2(a). A beam
of isolated SiO2 nanoparticles was prepared via an aerosol technique [30], where the particles were brought into a
gas streamofN2 from suspension in ethanol, dried out by a diffusion dryer and focused into the laser focus
with an aerodynamic lens, after whichmost of the residual gas was removed through differential pumping
[17, 20–23]. Silica nanoparticleswith diameters of 60 and 300 nmand anarrow size distributionwere preparedby
wet chemistry approaches. Firstly, small seednanoparticleswere prepared by the Stöbermethod [31]. In a typical
seed preparationprocedure 21 g of TEOS, 28 ml of ammonia solution (25 wt% inwater) and 1mlofwaterwere
added to 530mlof ethanol and stirred for 12 h. Further shellswere grownon the silica nanoparticles successively
by the seeded growthmethod [32]until the desired particle sizewas reached.All samples have been stored in
ultrapure ethanol after cleaning.Characterizationby transmission electronmicroscopy aswell as dynamic light
scattering yielded a polydispersity of about 5% for the 60 nmand2.9% for the 300 nmparticles, respectively.

Figure 1. Spatial distribution of the intensity enhancement of the near-field at SiO2 nanoparticles with a diameter of (a), (c) 60 nmand
(b), (d) 300 nm in the propagation-polarization plane as obtained fromMie simulations (wavelengths as indicated). (e) Schematic of
the enhanced profiles (radial electricfield) for the red (780 nm) and blue (390 nm) contributions of a two-color laser field.
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Figure 2(b) shows the schematic diagramof the collinear two-color setup. The infrared (IR,ω) laser pulses of
30 fs duration centered at 780 nmat 1 kHz repetition rate with an energy of up to 1.3 mJwere obtained froman
amplified Ti:Sapphire laser system (see [33, 34] for details). The laser beamwas sent into a telescope (2:1) before
entering a BBO crystal, where a second harmonic (SH, 2ω) pulsewas generatedwith polarization orthogonal to
the fundamental. Both pulses were sent into aMach–Zehnder interferometer to generate delay-controlled two-
color pulses. The polarization of the SHpulse was rotated by 90° via a half-wave plate and became parallel to that
of the IR pulse. Tomatch the spatial intensity profiles of the 2ω andω pulses in the focus, an iris was introduced
into the IR armof the interferometer. The intensities of theω and 2ω components were controlled by neutral
density filters in both arms. The resulting laser pulses were focusedwith a 50 cm focal lengthmirror and
intersected the nanoparticle beam in the center of the ion optics of aVMI spectrometer. The electron emission
was projected onto amicro-channel-plate (MCP)/phosphor screen assembly and the resulting imagewas
recorded for each laser shot with a complementary-metal-oxide-semiconductor camera [35]. The
discrimination of the single-shot frames to those that contain emitted electrons from aerosolized nanoparticles
is performed by selecting frameswithmore than 30 electrons, where the typical number of detected electrons
from the background gas is less than 20 in this study.

The scheme of the two-color excitation in the polarization-propagation plane is depicted infigure 2(c). In
the experiment, the fieldwaveformwas precisely controlled by a computer-controlled linear translation stage in
one of the interferometer arms. The laser parameters in the interaction volume such as intensity and relative
two-color phase were determined from referencemeasurements of above-threshold ionization (ATI) of xenon
and comparison to time-dependent Schrödinger equation simulations [36].

The effect of the two-color field on the electron photoemission and accelerationwas studied for SiO2

nanospheres of two different diameters d: 60 and 300 nm,where electron emissionwas recorded as a function of
the two-color phase. Figures 3(a), (f) show typical phase-averagedmomentumdistributions for both
nanoparticle sizes. Although, at lowmomenta, the distributionsmay contain spurious photoemission signal
from residual background gas, the highmomentum electrons originate predominantly fromnanoparticles via
ionization and backscattering at the surface [19]. The high-energy signal can thus serve to inspect the directional
control of the two-color electron emission. Figures 3(b), (c) and (g), (h)display typical phase-resolvedVMI
images after subtraction of the phase averaged spectra and reveal that a part of the electron emission can be
effectively switched between the upwards or downwards direction.

Figure 2. (a) Schematic of the collinear two-color velocity-map imaging (VMI) setup and the nanoparticle source. The infrared (IR,ω)
pulse and its second harmonic (SH, 2ω) are focused onto a beamof isolated nanoparticles in the center of the ion optics of a VMI
spectrometer. The left panel shows the schematic diagramof the collinear two-color setup (b), and scheme of the two-color excitation
in the polarization and propagation plane (c), qem indicates the electron emission angle. BBO: beta bariumborate; RM: reflective
mirror; DM: dichroicmirror;HWP: half-wave plate; NDF: neutral densityfilter. The right-bottom inset shows a transmission electron
micrograph (TEM) of 300 nmdiameter SiO2 nanoparticles.
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In order to investigatemore quantitatively, which portion of the emitted high-energy electrons can
be controlled by the two-color phase in the experiments, we have extracted the phase-dependent and
-independent electron yields by fitting the data for eachmomentumwith the function j =( )Y p p, ,x y r

j j+ D +( ) ( ( )) ( )Y p p p p Y p p, cos , ,x y r x y x yamp indep. where ( )Y p p,x yamp is the amplitude of the phase-dependent

signal, jD ( )p p,x y is a phase offset, and ( )Y p p,x yindep. is the phase-independent signal. The amplitudes of

the phase-dependent signals are shown infigures 3(d), (i) for d=60 nmand d=300 nm, respectively. To
illustrate the degree of control, the ratios between the phase-dependent and -independent signals =( )Y p p,x yratio

( ) ( )/Y p p Y p p, ,x y x yamp indep. were evaluated and are shown infigures 3(e), (j) for the data from figures 3(d), (i).We

find that the ratio exceeds 0.5 in the near-cutoff regions, indicating a large degree of control with the phase of the
two-color laser field.

For 60 nmdiameter particles, field propagation effects are small for both spectral components of the two-
colorfield r r= =w w( )0.26, 0.522 such that the electron emission exhibits a directionally undistorted
character with respect to the propagation direction, and a phase controlled contribution that is centered around
angles of 90 . For the larger nanoparticles (300 nm),field propagation (in particular strong for the 2ω-
component, see figure 1(d)) results in a substantial distortion of the electron distributionwith an emission
preference of high energy electrons towards angles being significantly smaller than 90° (tilted to the backside of
the nanosphere) as shown infigures 3(g), (h).

While similar propagation-induced directional control of the electron emission has already been observed
withCEP-controlled few-cycle pulses [19, 37], those studies have been carried out at a single (central)
wavelength, such that a change of theCEP allowed only for control of the up versus down emission, while the
directionality could only be steered by changing the particle size. In the present study, we focus on an all-optical
control of the emission angle, where in addition to having two distinct fields controlled via the two-color phase,
the intensity ratio provides an extra parameter to control the relative strength of propagation induced
asymmetry in the electron emission in single-size nanoparticles (shownhere for 300 nm). It is noteworthy that

Figure 3.Phase-averaged projected electronmomentumdistributions obtained frommeasurements on SiO2 nanoparticles of
diameter (a) d=60 nm, and (f) d=300 nm. The intensities of the spectral components of the two-color laser pulses were

= ´w
-I 3 10 W cm12 2 and = ´w

-I 1.5 10 W cm .2
11 2 Distributions for relative phases as indicated for (b), (c) d=60 nmand

(g), (h) d=300 nm, respectively. Here, for better visibility, the phase-averaged datawas subtracted. (d), (i)Amplitude distributions
of the phase-dependent signals for d=60 nm and d=300 nm, respectively. (e), (j)Ratios between phase-dependent and phase-
independent signals for the data shown in (d), (i).
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our studies are carried out at intensities of several TW cm−2, which are below the plasma generation threshold.
The nanoparticles therefore remain intact during their interactionwith the two-colorfield, such that the
dynamics differs strongly from relatedworks on the control of charged particle emission from clusters and
nanoparticles in the plasma regime [36, 38].

The results of the phase-dependentmeasurements are presented infigures 4(a)–(c). Themaps reflect the
cutoff energy of photoemitted electrons as function of emission angle and relativeω-2ω phase. Figure 4(g) shows
a typicalmomentum spectrum for a selected emission angle and relative phase (black line) obtained from the
measurement andfittedwith a Fermi function (red line). The cutoff is obtained as themomentumwhere the
corresponding normalized yield drops by two orders ofmagnitude compared to the yield in the plateau region.
To quantify the two-color control of the photoemission, we perform two complementary analyses.

First, similar to the analysis of CEP-dependent emission in earlier work [24], the phase dependent electron
cutoff energy Ec for each emission angle qem isfittedwith a function j j= + -( )E E E cos .rc 0 amp offs Here, E0 is
a constant offset, Eamp is themaximumamplitude of the cutoffmodulation andjoffs is the relative phase for
which themaximal cutoff is realized for a given angle. The emission angle which yields themaximumcutoff
energy is called critical emission angle q .em

crit The obtained angular dependent phase offsetsj q( )offs em and critical

emission angles qem
crit are plotted as solid blue lines andwhite dots infigure 4, respectively. For the small

nanoparticles (figure 4(a)), the critical emission angle is close to 90 , reflectingmaximum enhancement at the
particle poles in the absence of propagation effects for bothω and 2ω components. Note, that wefind similar and
therefore consistent behavior for small nanoparticles also for higher intensity ratios (not shown here). As a
result, the relative phase has negligible effect on the directionality and onlymodulates the cutoff, with opposite
sign for the upward versus downward emission direction. This type of directional control via the phase
corresponds to the up-down switching observed previously withCEP-controlled few-cycle fields [19]. For the
larger particles (figures 4(b)–(c)), however, the critical emission angle is not only shifted to smaller values

Figure 4.Angular and phase-resolved electron cutoff energiesmeasured (a)–(c), and calculated (d)–(f) for SiO
2
nanoparticles induced

by two-color laserfields. A discrete 2D-Fourier filtering algorithmhas been employed to the experimental cutoff energymaps and
only the lowestfive Fourier orders were used to filter out high frequency noise. The IR intensitywas = ´w

-I 3 10 W cm .12 2 The
intensity ratio between 2w and w fields and the nanoparticle diameters are indicated accordingly. Energies are normalized to the
ponderomotive potentialUp of the incident IR field. The solid blue lines are angular dependent phase offsets j q( ).offs em Black lines
show the relative phase dependent optimal emission anglesq j( )rem

opt of the cutoff energies andwhite dots indicate the critical emission
angles q .em

crit (g)A typicalmomentum spectrum for a selected emission angle and relative phase (black line), which has been fittedwith a
Fermi function (red line) to determine the cutoff (black dot). (h)Optimal angles for downward emission from (c) and (f), as indicated.
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(i.e. towards the light propagation direction), as also seen in few-cycle experiments [19], but exhibits a clear
structuralmodification of the angular distributions as a function of the relativeω-2ω phasej .r

Second, to quantify the dynamics of the phase-dependent emission directionality, we inspect the optimal
emission angle q j( ),rem

opt whichwe define via themaximal energy of the emission in up/downward direction for
each individual phase, see black curves infigure 4. For 300 nmnanoparticles, when the intensity ratio I2ω/Iω is
relatively small h =( )0.05 , the optimal angle shows little variation around the critical emission angle q = 75em

crit

(figure 4(b)). For a significantly larger intensity ratio (h = 0.5), the optimal angles are shifted to considerably
smaller values and lie around 63°, seefigure 4(c).Most importantly, they show a rapid variation (directional
switching) of around 25°–30° as function of the relative phase, see black curve infigure 4(h). These results
demonstrate the feasibility of using two-color laser fields for the control of the emission direction of themost
energetic electrons fromnanoparticles. This observation goes beyond the recently shown two-color control of
the cutoff in the electron emission frommetallic nanotips [3, 4, 39].

To identify themechanismbehind the observed all-optical control of emission directionality of themost
energetic electrons fromnanospheres, we performed 3-dimensional semi-classical trajectory simulations based
on the Simple-Man’sModel (SMM) [40]. Briefly, classical electron trajectories are generated at the nanosphere
surface and propagated in the two-color near-field. The temporal and spatial evolution of the latter is described
by theMie solution. For trajectories returning to the surface, elastic specular reflection is assumed. The energy

acquired by the electron can be expressed in terms of the ponderomotive potential l= ~
w

U I ,e E

mp 4
2

2 2

2 where e is

the elementary charge,m the electronmass,E the amplitude,ω the laser frequency,λ thewavelength, and I the
intensity of theω component of the drivingfield. The trajectories are launched at the classical tunnel exit with
zero velocity, andweighted byAmmosov–Delone–Krainov (ADK) atomic tunnel ionization rates [41]. As is
known frompreviouswork [21, 24, 29, 42], the near-field enhancement andmulti-particle charge interaction of
the liberated electrons and residual ions contribute to the electron acceleration process and can result in an
increase of the electron emission cut-off to several tens ofUp [19, 21]. As the laser intensity in this study,
however, was below ´ -1 10 W cm ,13 2 wheremulti-electron effects are negligible [17], the SMMcan provide an
adequate description of the electron acceleration dynamics. The control of the photoemission of themost
energetic electrons for small and large diameter SiO2 nanoparticles, see figures 4(a)–(c), is well reproduced by the
SMMsimulations using the experimental parameters, see figures 4(d)–(f).Most importantly, the simplified
model qualitatively reproduces the relative phase-dependent directional switching (see blue curve infigure 4(h))
in the relative phase region around theminimumcutoff energy for emission into the lower half space, see
figures 4(c), (f). Due to the propagation induced retardation effects, theminimumcutoff energy is realized for
different relative phases as function of angle—forming the physical grounds for the envisaged phase-controlled
modification of the surface regions delivering the highest electron cutoff energy. The observed ‘drop feature’ is
themost important qualitative signature that evidences the resulting switching. The remaining offset and the
difference in the detailed oscillatory behavior infigure 4(h) are attributed to the simplicity of the SMMmodel
that uses specular scattering. Nevertheless, themain qualitative feature is clearly captured by themodel.

A quantitative analysis of the influence of the intensity ratio between theω and 2ω components on the
preferential energetic electron emission direction is presented infigure 5. The critical emission angle qem

crit starts
at the angle of themaximumenhancement of theω component qw ,max and becomes smaller as the 2ω intensity
increases. It shifts by about 10 when increasing the intensity from0.05 to 0.5 wI .The results are quantitatively
reproduced by our SMMsimulations (blue line).

In principle, the presence of the 2ω field component can affect both themagnitude and spatial distribution of
the ionization rate aswell as the trajectory dynamics of the released electrons. The relative contributions of the
effects of the 2ω field on the ionization rate and the trajectory propagation can be revealed by performing a
selective activation in the SMMsimulations, in analogy to the analysis in [4]. Infigure 6we show (a) the
predicted angular and phase-resolved electron cutoff energies with the 2ωfield included in the trajectory
propagation but neglected in the ionization rate (here just driven by theω field) and (b) for the 2ωfield included
in the ionization process, but propagation just driven by theωfield. Note that the impact on the tunnel exit is
assumed to be negligible due to the relatively weak 2ωfield.We closely compared the phase offsets from the
calculations for both cases to the full simulation infigure 6(c). The phase offset from the full simulation (blue
line) is well reproducedwhen including the 2ω component only in the propagation but not in the ionization (see
blue circles).

Previous work has indicated that the radial fields on the nanoparticle surfacewere dominating the electron
acceleration process [19]. To verify that this is also the case for the two-color control, we have inspected the
phase evolution of themaximum radial vector potential j( )pot. on the surface. The very good agreement with the

experimental and full two-color simulation data (seefigure 6(c)) confirms that the all-optical control of the
maximumenergy electrons is also dominated by the radial fields.

6

New J. Phys. 21 (2019) 073011 QLiu et al



We like to note that all the angular dependent phase offsets infigure 6(c) exhibit a tilt with emission angle.
This arises from the change of the relative phase of the two-colorfield on the nanosphere surface due tofield
propagation [19]. The relative phase changes only weakly as function of angle on both front side q > ( )100em

and back side q < ( )60em of the nanosphere. In between, in themost relevant ‘hot’ areawith strong field
enhancement (see figure 1(b)), the phase change has a roughly linear slope and is in good agreementwith the
evolution ofj .pot. Most importantly, the directional switching (see black lines infigure 6(a)) can unambiguously

be attributed to the two-color effect on the trajectories.

3. Conclusions

In conclusion, all-optical control of the directional emission of a considerable fraction of themost energetic
electrons fromnanospheres with intense two-color femtosecond laserfields was demonstrated. The control is
observed for nanoparticle sizes for which theMie size parameter r is above unity for at least the 2ωfield.
Trajectory simulations captured both the two-color phasemodulation and optimal emission angles for the
energetic photoemission at differentω-2ω intensity ratios. A selective activation of the 2ωfield in the simulations

Figure 5.Critical emission angles obtained from themeasurement (circles) and SMMsimulations (solid blue line)with 300 nmSiO2

nanoparticles. The horizontal error bars indicate the uncertainty of the experimental intensity ratio. The vertical error bars reflect the
confidence interval for thefit of the phase dependent electron cutoff energy. The angles of themaximumenhancement ofω and 2ω
components are q = w 74.2max (red dashed line) and q = w 36 ,2

max respectively.

Figure 6.Angular and phase-resolved electron cutoff energies in two-color laserfields predicted by SMM for 300 nmSiO2

nanoparticles. The laser parameters are the same as in figure 4(e). The 2ωfields are selectively activated in the calculations as indicated
in (a) and (b). The blue circles in (a) show the fitted angular dependent phase offsets j q( ).offs em The black lines are the phase dependent
optimal emission angles. (c)Comparison between phase offsets from full SMMcalculations (blue lines) andwith the 2ωfield included
only in the trajectory propagation (blue circles). The green solid line represents the phase offsets obtained from themaximum radial
vector potential. The phase offset obtained from experiment is shown as grey line. The shadow indicates the confidence interval of the
fit of phase dependent electron cutoff energies.
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revealed the pivotal effect of the trajectorymodification on the energetic electron emission. The all-optical
control scheme demonstrated for isolated nanospheres is expected to be applicable also inmore complex
(isolated and surface based)nanosystems. The presentedwork paves theway towards all-optical control of
quantumdynamics in near-fields andmayfind applications in the generation and control of ultrashort electron
pulses.
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