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ABSTRACT This paper is concerned with a comparative study of biped walking on rough terrains. Given
a bipedal robot capable of walking on a flat ground with periodic behavior, whose motion can be described
by a limit cycle with the Poincaré map, we consider whether the robot remains stable on rough terrain,
in which geometrical uncertainties of the terrain are assumed to be persistent and bounded. More precisely,
the l∞-induced norm is defined on the Poincaré map and taken as a performance measure evaluating a
robot walking with the bounded persistent uncertainties. To minimize the performance measure and achieve
an optimal walking performance, we further provide a systematic controller design scheme consisting of a
inner-loop continuous-time controller and a outer-loop event-based controller, in which the latter is described
as a sort of the l1 optimal controller. Finally, the validity as well as the effectiveness of our proposed methods
in biped walking on a rough terrain are demonstrated through simulation studies.

INDEX TERMS Bipedal robots, legged locomotion, robust uneven terrain walking, limit cycle, event-based
control.

I. INTRODUCTION
There have been a number of studies on stable walking
of bipedal robots in structured environments (such as labs
and indoors), which have shown successful demonstrations
through simulations and experiments [1]–[3]. Consequently,
stable and robust walking of bipedal robots on unstructured
terrains has recently attracted much attention of robotics
community, and various control methods for biped walking
have been developed in [4]–[9].

A. OBJECTIVES OF THIS PAPER
With respect to the aforementioned various methods, this
paper is in a position to take advantage of existing available
controllers which are capable of stable level ground walk-
ing, and aims at improving their robustness against external
disturbances arising from uneven terrains. More precisely,
this issue would be interpreted as a problem of robust per-
formance analysis throughout the present paper, and the
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following two questions should be tackled to establish the
corresponding problem formulation.

(a) How can we evaluate/compare the performance of
biped walking on the uneven ground in the sense of
disturbance rejection?

(b) If we are equipped with such a measure, can we utilize
it to improve performance of a walking controller?

To put it another way, these two questions motivate us to
construct a detailed robust control problem relevant to stable
walking of bipedal robots on rough terrains, and it could be
classified by the following sub-problems.

(A) Sub-problem 1 Define an adequate measure. One
could determine how well the biped walking robot
keeps from falling in the presence of disturbances by
defining an adequate performance measure.

(B) Sub-problem 2 Design an optimal controller based
on the proposed measure. If a solvable problem cor-
responding to an optimal controller synthesis could be
formulated, robust outdoor walking of bipedal robots
would be possible.
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To resolve the sub-problems above, this paper takes a
hierarchical feedback control architecture. In other words,
the main concern of this paper is to design an outer loop con-
troller via an event-based control scheme to achieve robust-
ness and optimality of a periodic trajectory for rough terrains,
in which the corresponding periodic motion is assumed to be
constructed by an inner loop feedback controller based on the
conventional limit cycle walking paradigm [10].

B. RELATED STUDIES ON POINCARÈ MAP
The advantages and expectations of our control architecture
can be described as follows. First of all, the stability of a biped
walking robot is expected to be verified by exploiting the
fact that the orbital stability of a periodic trajectory has the
one-to-one correspondence with the stability of an associated
Poincarè map, as shown in the previous studies [10]–[12].
This architecture can also make direct applications of robust/
optimal control theories developed in linear time-invariant
(LTI) systems to nonlinear complex biped walking systems
to be simple, by defining an adequate performance measure
on the linearized Poincarè map. For example, one of the
most representative methods in linear control theories, so-
called the linear quadratic regulator (LQR), has been used
in [13], [14] for achieving stable walking of robot systems.
Aiming at robust performance for unknown elements in biped
walking systems, the methods of the H2 optimal control and
theH∞ optimal control have been employed in [15] and [16],
respectively, while a min-max problem is also solved in [17]
to reduce the response of the systems for a sort of step-down
which can be also mathematically represented by an impulse
disturbance.

Here, it should be remarked that disturbances of practical
importance occurring during outdoor walking cannot be lim-
ited to those of finite energy, but the aforementioned studies
are confined themselves to dealing with such disturbances.
Hence, it is quite important to develop a systematic method
for tacklingmore realistic disturbances originated from rough
terrains consisting of pebbles for example, which should be
mathematically represented as bounded and persistent distur-
bances.

C. CONTRIBUTIONS AND ORGANIZATION OF THIS PAPER
With regard to robustness for bounded persistent distur-
bances, this paper is concerned with the treatment of the l1
optimal control theory in walking systems. More precisely,
the main idea of this paper is to take the l∞-induced norm as a
quantitative performance measure on the linearized Poincarè
map relevant to biped walking systems for bounded persis-
tent disturbances. The employment of the l∞-induced norm
is theoretically meaningful since this norm corresponds to
the l1 norm of the impulse response and it is essentially
equivalent to the maximum magnitude of the response for
the worst input with a unit amplitude (i.e., the worst bounded
persistent input). At each step a bipedal robot interacts with
the ground, we consider the synthesis of a sort of event-
based controllers based on such a quantitative performance

measure. In other words, the l1 optimal event-based controller
adequately updates some parameters of the inner-loop con-
troller, by which the proposed measure (i.e., the l∞-induced
norm) could be minimized. More importantly, it would be
shown that the synthesis problem of the l1 optimal event-
based controller can be equivalently transformed to that of
the (pure) discrete-time l1 optimal control, for which there
are some useful solution tools as discussed in [18], [19]. As
this will suppress the worst possible behavior, the walking
performance of a bipedal robot for persistent terrain distur-
bances could be improved considerably. Another advantage
of the proposed framework is that it requires no particular
form of the inner-loop closed system.

The contributions of this paper could be summarized
as follows. This paper provides a systematic framework
for improving robustness of biped walking systems against
bounded persistent disturbances for the first time. This new
framework would be also shown to be converted to a solvable
problem of the so-called (pure) discrete-time l1 optimal con-
trol. The characteristics of this framework in biped walking
systems are also theoretically analyzed by comparing other
Poincarè map-based frameworks. Simulation results with a
nonlinear dynamic walking model on rough terrains that their
slope or height are randomly varied are given to demon-
strate the effectiveness of the framework. Finally, it should
be remarked that the arguments introduced in this paper
are significant extensions of the partial results presented at
the conferences [20], [21], in which rigorous mathematical/
theoretical arguments were omitted.

The organization of this paper is as follows. The problem
formulation associated with biped walking systems is pro-
vided in Section II. The main results of this paper relevant to
the l1 optimal event-based control are given in Section III, and
their theoretical comparisons to other Poincarè map-based
frameworks are discussed in Section IV. Simulation results
with existing simple biped walking model are presented in
Section V, and the application of the proposed method to
failure prediction is thoughtfully discussed in Section VI.
Finally, the concluding remarks are given in Section VII.

The notations used in this paper are as follows. The nota-
tions N and Rν imply the set of positive integers and the set
of ν-dimensional real vectors, respectively, while the notation
N0 implies N ∪ {0}. We use the notation ‖ · ‖∞ to mean the
l∞ norm of a vector sequence, i.e.,

‖g(·)‖∞ := max
i

sup
k∈N0

|gi(k)|,

and the matrix∞-norm, i.e.,

‖T‖∞ := max
i

∑
j

|Tij|,

and the l∞-induced norm of an operator T , i.e.,

‖T‖∞ := sup
‖w‖∞ 6=0

‖(Tw)(·)‖∞
‖w‖∞

,

whose distinction will be clear from the context.
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II. PROBLEM FORMULATION FOR BIPED WALKING
This section constructs the problem formulation for biped
walking on rough terrains. To put it another way, this section
introduces a Poincarè map-based method for analyzing biped
walking motions through a limit cycle. This method is based
on a hierarchical feedback control architecture consisting of
an inner-loop controller and an outer-loop controller, in which
the parameters of the former are updated by the latter. More
importantly, it would be shown that this involved hierarchical
control architecture could be converted to a standard robust/
optimal control problem through a linearization of the corre-
sponding Poincarè map.

A. BIPED WALKING MODEL BASED ON POINCARÉ MAP
This section considers the treatment of the walking motion
as a limit cycle, similarly for the arguments in [12], [22].
The behavior of the limit cycle can be described by the first
return map, i.e., the Poincarè map, which relates the states
of a walking robot between successive steps. In other words,
the Poincarè map x 7→ P(x) can be described by

xk+1 = P(xk ) (1)

where xk = x(tk ) ∈ Rn represents the n-dimensional state of
the robot at k-th step, i.e., k-th intersection between the robot
trajectory and the Poincarè section with time t = tk (k ∈ N0).

Next, an inner-loop controller of a bipedal robot is sup-
posed to be represented by

τ (t) = 0(x(t),u) (2)

(i.e., the parameterized (continuous-time) state-feedback
form), where u ∈ Rnu is the parameter vector of the controller
and τ (t) ∈ Rnτ is the input vector at time t . We also assume
additional constraint to properly formulate the problem such
that the adjustable control parameter vector u is updated
in a discrete-time manner only when the system trajectory
jumps on the Poincarè section and remains the same during
its continuous-time dynamics.

Consequently, we define the nw-dimensional unknown dis-
turbance vector w originating from uneven terrain. The type
of disturbances that we deal with in this paper only include
the effect of ground geometry which varies at each step but
remains the same during a single step. Indeed, similarly for
the arguments in [9], we construct a natural assumption on the
disturbance w that it does not affect the inner-loop system.
To put it another way, considering the disturbance due to

terrain together with the control parameters varying at each
step leads to an extended Poincarè map described by

xk+1 = P(xk ,uk ,wk ), (3)

where uk and wk are the parameters of the controller (2) and
the disturbance at k-th step, respectively.

Finally, suppose that the continuous-time state-feedback
controller of (2) with a particular set of parameter u = u∗

constructs a stable limit cycle in the absence of disturbance
w, i.e., on the level ground. We call this controller and the

corresponding system the inner-loop controller and the inner-
loop system, respectively, throughout the paper. In this sense,
the fixed point of the map, which is denoted by x∗, corre-
sponds to the limit cycle in state-space, i.e.,

x∗ = P(x∗,u∗,w∗), (4)

and the (local) orbital stability of the limit cycle is equiva-
lent to the stability of the corresponding fixed point on the
Poincarè map [11], [12], [23]. The Poincarè map of the limit
cycle walker is often analytically intractable and only found
numerically. Therefore, the local orbital stability has been
also assessed numerically in [11], [24], and linearizing the
Poincarè map and adequately defining the output vector plays
a quite important role in such a numerical stability analysis.
In connection with this, this paper also develops an optimal
control scheme to bounded persistent disturbance on this
linearized Poincarè map.

B. REDUCTION TO OPTIMAL CONTROL PROBLEM
Because the map P can be assumed to be differentiable with
respect to x,u,w at the fixed point (see [12] for details), we
can conduct the linearization of the nonlinear discrete-time
dynamical system of (3), bywhichwe can lead to the discrete-
time linear time-invariant system described by

xk+1 = Axk + B1wk + B2uk , (5)

where A =
∂P
∂x
|(x∗,u∗,0), B1 =

∂P
∂w
|(x∗,u∗,0), and

B2 =
∂P
∂u
|(x∗,u∗,0). Without loss of generality, we further

assume that the state vectors, inner-loop control param-
eters and as well as disturbances are chosen such that
(x∗,u∗,w∗) = (0, 0, 0).
As mentioned before, the main objective of this paper is

to improve the performance of the inner-loop system (5)
for the disturbance w, but there is no method for achiev-
ing such an objective if we are confined ourselves to this
system description (i.e., (5)). Thus, it is quite important to
construct the corresponding problem formulation, and this
situation motivates us to develop an involved approach to a
hierarchical control architecture consisting of the inner-loop
system (i.e., (5)) together with an outer-loop system, which
adjusts the inner-loop control parameter u. As a solution for
this problem, in particular, this paper proposes to adopt the
optimal linear control design formulation.

We begin with noting that the nz-dimensional regulated
output z = h1(x,u,w) and the nu-dimensional measurement
output y = h2(x,u,w) could be properly defined according
to the desired performance objective and the practical con-
ditions of the implemented sensors of the bipedal robot. In
this regard, we consequently define the sensitivity matri-

ces as C1 =
∂h1
∂x
|(x∗,u∗,0), D11 =

∂h1
∂w
|(x∗,u∗,0), D12 =

∂h1
∂u
|(x∗,u∗,0). Here, similarly for the case of P, h1 and h2

are assumed to be differentiable with respect to x,u,w at the
fixed point. The output associated with the fixed point is also
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described by z∗ = h1(x∗,u∗, 0) = 0. Indeed, the measure-
ment y would be adequately determined to be used for the
feedback controller design; the sensitivity matrices C2, D21
and D22 are also defined in an equivalent fashion to those for
z.

By combining the above arguments, we can lead to the
linearized discrete-time system for P described by

P :


xk+1 = Axk + B1wk + B2uk
zk = C1xk + D11wk + D12uk
yk = C2xk + D21wk + D22uk .

(6)

With this representation in mind, we aim at constructing the
problem definition with the consideration of stable walking
for uneven terrains. In other words, the problem for analyzing
the effect of the disturbance w on the regulated output z
together with the problem forminimizing this effect should be
mathematically formulated. As a preliminary step to proceed
the mathematical formulations, we next consider the synthe-
sis of an event-based discrete-time linear dynamic output-
feedback controller described by

9 :

{
ψk+1 = Aψψk + Bψyk
uk = Cψψk + Dψyk ,

(7)

where ψk is the state vector of the controller 9,
Aψ ,Bψ ,Cψ ,Dψ are the parameters of the controller to be
properly designed. Here, it would be worthwhile to note
that it can be expected to achieve an optimal performance
for the unknown disturbance w by employing the extended
dynamic output-feedback form as (7) rather than a simple
state-feedback form. Furthermore, without loss of generality,
the term D22 is assumed to be zero when we consider the
synthesis of 9 and the closed-loop system consisting of P
and9. In this sense, wewill assumeD22 = 0 in the following.
Based on the above two representations of (6) and (7),

the stability issues of biped walking on uneven terrains can
be summarized as follows (which are also interpreted as
generalized versions of Sub-Problem 1 and Sub-Problem 2 in
I, respectively):
(I) Performance analysis problem With regard to the

evaluation of stability for biped walking on uneven
terrains, it is quite meaningful to define an adequate
quantitative performance measure for the closed-loop
system consisting of P with 9, and such a perfor-
mance measure is expected to be formulated through
an induced norm fromw to z. Consequently, a tractable
method for computing the performancemeasure should
be developed.

(II) Optimal controller synthesis problem In connec-
tion with the quantitative performance measure defined
above, it is very important to clarify whether or not
the synthesis problem of an optimal controller for min-
imizing the performance measure is solvable. To put
it another way, providing a method for designing an
optimal controller9 whichminimizes the performance
measure defined for the closed-loop system consisting

of P with9 plays a key role in establishing fundamen-
tals for robust outdoor walking.

III. SOLUTION PROCEDURES
This section is devoted to giving the solution procedures for
the problems (I) and (II) discussed at the end of the previous
section.
To deal with bounded persistent disturbances together with

their appropriate quantitative measure, we first take the l∞
norm as a topology for signals in the biped walking system.
It turns out that the disturbance w and the regulated output
z are assumed to be in the l∞ space, and their l∞ norms
are bounded, i.e., ‖w‖∞ < ∞ and ‖z‖∞ < ∞. In this
sense, the performance analysis problem illustrated in the
previous section can be equivalently restated as the l1 analysis
problem (i.e., the l∞-induced norm computation problem).
At the same line, the optimal controller synthesis problem
explained in the previous section can be equivalently restated
as the l1 synthesis problem (i.e., the synthesis problem of
the optimal controller minimizing the l∞-induced norm). It
would be worthwhile to note that the analysis/synthesis prob-
lem associated with the l∞-induced norm for a given linear
time-invariant (LTI) system is called the l1 analysis/synthesis
problem, because the l∞-induced norm of a system coincides
with the l1 norm of the impulse response for the single-
input/single-output (SISO) case. We further briefly provide
the effectiveness of the l∞-induced norm in biped walking
systems as follows.
• If we note that the l∞-induced norm corresponds to the
maximummagnitude of the output derived from the pos-
sible worst disturbance, this measure is obviously more
practical than other measures in assessing a walking
performance of a bipedal robot.

• Disturbances such as changes of slope and height
occurred in real biped walking systems can be treated
by adopting the l∞-induced norm. Such disturbances
are also physically intuitive since they do not require
any specific stochastic characteristics but the maximum
amplitude.

The problems corresponding to the l1 analysis and synthe-
sis which will be tackled in this section can be depicted as
Fig. 1.

A. PERFORMANCE ANALYSIS
Let us consider the closed-loop systems consisting of the
discrete-time system P given by (6) and the discrete-time
dynamic output feedback controller 9 given by (7), and
denote it by Pcl . If we newly define the state of Pcl as ξ k :=
[xTk ψ

T
k ]
T , the dynamics of Pcl is described by

Pcl :
{
ξ k+1 = Aclξ k + Bclwk

zk = Cclξ k + Dclwk ,
(8)

where

Acl =

[
A+ B2DψC2 B2Cψ

BψC2 Aψ

]
,
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FIGURE 1. A hierarchical control model of biped walking systems. The
parameters u of the inner-loop feedback controller 0 are updated by an
outer-loop event-based feedback controller 9. The analysis and synthesis
problems of the event-based controller are formulated as the l1 analysis
and synthesis problems on the linearized Poincarè map.

Bcl =
[
B1 + B2DψD21

BψD21

]
,

Ccl =
[
C1 + D12DψC2 D12Cψ

]
,

Dcl =
[
D11 + D12DψD21

]
.

Here, it is naturally assumed that the discrete-time controller
9 internally stabilizes the discrete-time systemP , i.e., all the
eigenvalues ofAcl are in the open unit disk necessarily for the
corresponding l∞-induced norm to be well-defined.
The performance analysis problem tackled in this section

is to compute the l∞-induced norm of the closed-loop system
Pcl given by (8), where this induced norm is defined as

‖Pcl‖∞ := sup
‖w‖∞ 6=0

‖z‖∞
‖w‖∞

= sup
‖w‖∞=1

‖z‖∞. (9)

We explain from the above equation the novelty of the l∞-
induced norm as a performance measure for biped walking
systems in both theoretical and practical senses as follows.
Suppose that a bipedal robot is walking on the rough terrain.
Let us further assume that the terrain uncertainties that would
affect the dynamics of the robot can be regarded as bounded
and persistent disturbance input by noting the fact that the
height or slope would vary at every single step the robot
interacts with the ground but the change may be bounded by
some maximum magnitude. Then, the relation between the
bounded persistent disturbance w and the regulated output
z can be quantitatively described by the l∞-induced norm
defined as (9).

It would be worthwhile to note that it is difficult to compute
an explicit value of the the l∞-induced norm, and thus we
provide a simple and approximate (but asymptotically exact)
method for obtaining the induced norm with any degree of
accuracy, which can be also interpreted as one of the contri-
butions in this paper. To this end, we introduce the truncation
parameter N ∈ N0 and the matrices Pcl and P

−

Ncl defined
respectively as

Pcl : =
[
Dcl CclBcl CclAclBcl · · ·

]
(10)

P−Ncl : =
[
Dcl CclBcl · · · CclAN

clBcl
]

(11)

Here, the finite-dimensional matrix P−Ncl is interpreted as a
truncated version of the infinite-dimensional matrix PNcl .
With these matrices, we introduce the following results.
Lemma 1: The following equation holds:

‖Pcl‖∞ = ‖Pcl‖∞. (12)

Lemma 2: There exists a constant M ∈ N0 such that

‖AM
cl ‖∞ < 1 (13)

With such an M , define the vector α[M ]
N as

α
[M ]
N :=


α
[M ]
N ,1
...

α
[M ]
N ,nz

 (14)

where

α
[M ]
N ,i : =

‖Ccl,iA
[M ]
Ncl ‖∞ · ‖Bcl‖∞

1− ‖AM
cl ‖∞

, (15)

A[M ]
Ncl : =

[
AN+1
cl · · · AN+M

cl

]
(16)

and Ccl,i is the ith row vector of Ccl . Then, we obtain the
inequality

‖Pcl‖∞ ≤ ‖P
[MU ]
Ncl ‖∞, (17)

where

P[MU ]
Ncl :=

[
P−Ncl α

[M ]
N

]
. (18)

Lemma 3: Define the vector βN as

βN :=

βN ,1...
βN ,nz

 , (19)

where

βN ,i := (Ccl,iAN+1
cl Xcl(AT

cl)
N+1CT

cl,i)
1/2 (20)

and Xcl is obtained through the following discrete-time Lya-
punov equation:

AclXclAT
cl − Xcl + BclBTcl = 0. (21)

Then, we obtain the inequality

‖P[L]Ncl‖∞ ≤ ‖Pcl‖∞, (22)

where

P[L]Ncl :=
[
P−Ncl βN

]
. (23)

The proofs of Lemmas 1–3 are provided in the appendix
since they are quite technical. Lemma 1 is relevant to the
analytic computation of ‖Pcl‖∞ but it involves an infinite-
dimensional matrix and thus such an analytic computation is
a non-trivial task. In this respect, the approximate methods
for computing an upper bound and a lower bound of ‖Pcl‖∞
are introduced in Lemma 2 and Lemma 3, respectively. We
readily obtain from Lemmas 1–3 the following result.
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Theorem 1: The following inequality holds:

‖P[L]Ncl‖∞ ≤ ‖Pcl‖∞ ≤ ‖P
[MU ]
Ncl ‖∞. (24)

Indeed, the gap between the upper and lower bounds in (24)
converges to 0 at an exponential order of N .

Proof: The first assertion is obvious from Lemmas 1–3.
The second assertion is also readily followed by noting that
‖A[M ]

Ncl ‖∞ and ‖AN
cl‖∞ (as well as α[M ]

N and βN ) tend to 0 at
an exponential order of N because Acl is stable.
Theorem 1 implies that we can compute ‖Pcl‖∞ within an

arbitrary degree of accuracy as the corresponding parameter
N becomes larger. Hence, we can conduct the quantitative
stability analysis for biped walking on uneven terrains by
using the arguments of Theorem 1.

B. OPTIMAL CONTROLLER SYNTHESIS
Even though the arguments of Theorem 1 are quite useful to
analyze the effectiveness of a given event-based controller as
well as the robustness of the overall closed-loop system (i.e.,
the biped walking system) for unknown bounded persistent
disturbances (such as uneven terrains), this theorem is limited
to the performance analysis problem and cannot be employed
in the corresponding controller synthesis problem by itself. In
this sense, we introduce a method for designing an optimal
event-based controller for minimizing ‖Pcl‖∞, i.e., the l1
synthesis for ‖Pcl‖∞.
The l1 synthesis can be explained as finding an optimal

controller9 which minimizes the l∞-induced norm ‖Pcl‖∞,
and it would be mathematically represented by

inf
9
‖Pcl‖∞ = inf

9
sup
‖w‖∞≤1

‖z‖∞ =: ‖Popt‖∞ (25)

Denote an optimal controller 9 achieving the infimum in
(25) by 9opt . Then, the l1 synthesis problem is to find 9opt ,
and this can be interpreted as a sort of min-max problems as
shown in (25).

Even though the details are omitted for a limited space,
we briefly introduce the solution procedure for the l1 synthe-
sis problem given by (25). The l1 synthesis problem could
be equivalently represented by a linear programming (LP)
problem, but it intrinsically involves a non-trivial property
of infinite dimensions. To alleviate the difficulties originated
from such a property, the duality theorem [25] is used in [18],
[19] to transform the primal problem into its dual problem.
In other words, these studies develop approximate methods
such as truncation idea and delay augmentation, by which
one could achieve an optimal controller with an arbitrary
degree of accuracy by solving the corresponding approximate
versions iteratively. In this sense, the problem of optimal con-
troller synthesis discussed in this paper is solvable through
an LP problem, and thus we could expect an optimal perfor-
mance of the biped walking system for uneven terrains by
using the optimal controller.

More precisely, regarding the l1 optimal controller as the
event-based parameter update law, the chosen parameters u
of the inner-loop controller can be updated at each step in

such a manner that the worst z, deviation of the system output
from the fixed point on the Poincarè map, is minimized while
walking on a terrain with unknown geometry which varies at
each stepw. This method is undoubtedly expected to improve
the actual performance for suppressing disturbances of the
system by minimizing the risk of fall.

IV. COMPARISON TO EXISTING MEASURES
This section is concernedwith a comparison of the new candi-
date of the l∞-induced norm to other measures used in biped
walking systems. We first provide several practical advan-
tages over the other measures considered on the Poincarè
map, such as the largest Floquet multiplier, H2 norm, and
H∞ norm. We also introduce other measures irrelevant to the
Poincarè map, which are also used in biped walking systems,
and consider comparison to the l∞-induced norm proposed
in this paper.

A. MEASURES ASSOCIATED WITH THE POINCARÈ MAP
The following measures listed in this subsection are associ-
ated with the Poincarè map for biped walking systems, but
there exist some disadvantages for robust walking on uneven
terrains.

1) LARGEST FLOQUET MULTIPLIER OF A LIMIT CYCLE
The eigenvalues defined on the corresponding linearized
Poincarè map of a limit cycle is called characteristic or Flo-
quet multipliers [23]. Because estimating approximate values
of the Floquet multipliers of stable limit cycle walkers in
experiments and in numerical simulations is computationally
not expensive, they have been widely used in the stability
analysis for both robot and human walking as discussed
in [11], [24], [26], [27]. In particular, the largest Floquet
multiplier contains information of decaying rate of small
perturbation over time, thus it has been used for disturbance
rejection measure. However, it was revealed in [16] that there
exists only small correlation between the actual disturbance
rejection performance and the modulus of the maximum
eigenvalue. Indeed, the information encoded in the Floquet
multipliers is not enough to fully characterize the response of
the system to the external disturbances.

2) THE H2 NORM
The gait sensitivity norm (GSN) is introduced in [16] to
provide a measure of the dynamic response of gait indicators
to a disturbance, and it is essentially equivalent to theH2 norm
defined on the linearized Poincarè map of the gait system. To
put it another way, the GSN (i.e., the H2 norm) corresponds
to the standard deviation of the system output response to
white noise as well as unit impulse disturbances. This mea-
sure showed high correlation to actual disturbance rejection
performance, and it is computationally efficient to obtain
the GSN in both simulations and experiments. Due to its
advantages, the GSN is also used in robotics and human gait
analysis [28], [29]. In spite of the aforementioned advantages
of the GSN, there could exist practical limitations arising
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from the fact that the GSN is related to averaged performance
for the impulse disturbance of the system, compared to the
advantages of the measure proposed in this paper (see III).

3) THE H∞ NORM
The H∞ norm of a system corresponds to the maximum
energy of the output for the energy-bounded worst input,
i.e., the L2-induced norm of the system. Hence, the fact that
it is related with the worst case performance for the energy-
bounded disturbances could make it more practical than the
GSN when we consider bipedal robots on rough terrains.
In this sense, a systematic approach to design an optimal
controller for stabilizing the periodic orbit of the system
together with minimizing the H∞ norm in the presence of
a single step-up/down disturbance was presented in [7]. Even
though it is tempting to use the H∞ norm as a measure in the
presence of such a disturbance (i.e., single step-up/down and
it can be also equivalently regarded as an impulse response),
it is still questionable to validate the effect of rough terrains on
bipedal robots as the single step-up/down disturbance. More
importantly, it is intrinsically assumed in the H∞ norm that
disturbances have bounded energy and they are regarded as
decreasing functions of time, but such an assumption cannot
be generally constructed on practical rough terrains of biped
walking systems.

B. OTHER MEASURES IRRELEVANT TO THE POINCARÈ
MAP
In this section, we introduce various existing performance
measures for quantifying the disturbance rejection of biped
walking systems. In particular, we are concerned with the
limitations of the following measures in terms of how to
utilize them to improve the walking performance on rough
terrains.

1) GENERIC MEASURES OF STABILITY TO ‘AVOID FALLING’
If one can find a set of points in the state-space from which
a bipedal robot is guaranteed to be able to avoid falling,
it should be considered as the most generic measure of
stability. In connection with this, the ‘viability kernel’ pro-
posed in [30] captures this concept mathematically. Simi-
larly, the basin of attraction (BoA) is the set of all states
that converges to the limit cycle asymptotically. These sets
require an evaluation of the full nonlinear system behavior
at all admissible state-space to predict its behavior as time
grows. Given any disturbance, whether the states of a bipedal
robot are in these sets or not can be used to determine
whether the bipedal robot can reject the disturbance. Conse-
quently, these measures could be interpreted as exact or even
ultimate criteria to analyze the system performance against
disturbances. However, obtaining these notions of stability
is computationally very expensive in numerical simulations
and even more cumbersome in real experiments since they
require a full forward nonlinear dynamic simulation or actual
experiments from all possible states. Therefore, they have a
limited practical value for control synthesis.

2) LARGEST ALLOWABLE DISTURBANCE
The maximum size of the disturbances that the system can
manage has been used as a measure for disturbance rejection
performance. This could be quantified by gradually increas-
ing the magnitude of a specific type of disturbance until
a robot eventually fails to walk. The type of disturbances
may include a pushing force at the hip [31], slope of the
ground [32], and a step-down height [33]. Even though
the measures give useful information, it is problematic to
adjust or re-design a controller based on it since they provide
no insight regarding the effect of the control parameter on
the maximum magnitude that a bipedal robot can manage.
Moreover, they do not provide any information on sequential
disturbances which are typically expected when walking on
rough grounds.

3) CRITERIA FOR SUSTAINED LOCAL STABILITY
For ease of a controller synthesis, local static and dynamic
stability criteria have been developed in [34], [35], where the
center of mass (CoM; for static) or the zero moment point
(ZMP; for dynamic) is required to be kept within base of
support of a bipedal robot at all time. Computation of the
margin of stability for these criteria is formal and efficient.
At a similar line, computing the maximal output admissible
(MOA) set within finite time has been conducted [36], [37],
in which time series of a control input are generated to satisfy
the ZMP stability constraint. However, this process requires a
constraint such that at least one foot of a bipedal robot should
be firmly placed on the ground, and thus its application to a
broader range of biped walking systems such as underactu-
ated systems is a non-trivial task.

V. SIMULATION RESULTS
In this section, we exploit one of representative models of
bipedwalking to validate the proposedmethodwith the event-
based l1 optimal control. We also use the notation Pnom to
denote a nominal system consisting of a Poincarè map (given
by (1)) and a state-feedback controller with fixed parameters
(given by (2)), i.e.,

Pnom :
{
xk+1 = Axk + B1wk

zk = C1xk + D11wk
. (26)

This is essentially equivalent to substituting uk = 0 in
(6), or more precisely, Aψ = 0, Bψ = 0, Cψ = 0 and
Dψ = 0 in (7), i.e., no change in control parameters.

A. MODEL DESCRIPTION
We adopt the state-determined biped walking model [27],
in which the energy balance between dissipation (foot-ground
collision) and compensation (ankle actuation) makes the cor-
responding limit cycle to be asymptotically stable. In this
planar model, complex mechanics of walking is deliberately
simplified so that the model has only one degree of freedom.1

1For more details, readers are referred to the original article [27].
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FIGURE 2. The simple walking model on unstructured terrains on which
terrain slope (bottom left) or height (bottom right) varies at each step.

Because the Poincarè map is analytically tractable, this sim-
ple model is quite useful to validate the proposed method
with the event-based l1 optimal control. We deal with the case
when this model walks on the unstructured terrains of which
slope γ varies at each step while its variation is bounded
by |1γ | = |γ | ≤ 1γmax, as illustrated in Fig. 2. Model
parameters including point mass m and lengths of rigid and
massless legs and feet L and l, are listed in Table 1.
The model has two phase: single stance and double stance.

In single stance phase, the model behaves as a passive
inverted pendulum pivoting around the leading heel. During
the double stance phase, the ankle of the trailing leg behaves
like a torsional spring and generates torque τ as

τ = κ(µ− ρ),
π

2
− α ≤ ρ ≤ µ, (27)

whereµ is the maximal plantar ankle extension, ρ is the ankle
angle, and κ is the proportional gain. Hence, the equation of
motion becomes

mL2θ̈ = mgL sin θ −

√
L2 + l2 − 2Ll cos ρ

l sin ρ
cos(θ − φ′)τ,

where intermediate variables φ′ and ρ are obtained from
geometry. When ankle torque becomes zero, it is followed
by take-off of the trailing leg and smooth transition from
the double to the single stance phase. Transition from the
single to the double stance phase occurs with the inelastic
and instantaneous collision, which introduces energy loss and
discrete jump in states as

θ̇+ = cos(2α)θ̇−,

where θ̇+ and θ̇− are the post- and pre-collision angular
velocities. Here, it is assumed that the inter-leg angle at
touchdown is controlled to be 2α.

B. PROBLEM FORMULATION
Taking the moment right after the foot-ground collision as
the Poincarè section, one can obtain an analytic Poincarè
map from the energy conservation and the inelastic impulsive

TABLE 1. Parameters of the simple walking model [27].

energy loss as follows

θ̇+k+1 = − cos(2α)

√
(θ̇+k )2 + 2

1Egrav + Ein
mL2

, (28)

where the subscript k represents k-th step, 1Egrav =
mgL(cos(α−γk−1)−cos(α+γk )) is the gravitational potential
energy change, and Ein =

∫
τdθ = 1

2κ(µ− (π2 − α))
2 is the

energy injected per step by ankle actuation.
The state and disturbance of the system are defined as

xk := θ̇+k , wk :=
[
1γk−1, 1γk

]T , and the output and
measurement of the system are selected to be the angular
velocity at the beginning of the double stance phase as zk =
yk := θ̇+k . This is a natural choice to evaluate performance of
biped walking, because insufficient kinetic energy will result
in failure of the model to vault over and make the next step.
The inner-loop controller (27) is modified as

τ = (κ∗ +1κ)(µ− ρ),
π

2
− α ≤ ρ ≤ µ, (29)

such that the parameter, torsional spring constant of the ankle,
is adjusted at each step by the optimal controller (25) with the
choice of uk := 1κk .

C. NUMERICAL EVALUATION
We evaluate the performance of the l1 optimal system and
compared it with that of the nominal system on the same
uneven terrain. The l∞-induced norms of the nominal system
Pnom and the optimal system Popt are also compared with the
actual value ‖z‖∞, the l∞-norm of the sequence of outputs,
measured from numerical simulations. To do this, we first
generate random terrains on which the models attempted to
walk for a hundred steps. The slope of the terrain varies for
each step, but the variation is bounded by a given number
‖w‖∞ = 1γmax. The simulations are conducted for a range
of ‖w‖∞, and for each ‖w‖∞, multiple random terrains are
generated. For both the nominal and optimal systems, it is
considered failure when the point mass failed to vault over
and make the next step, and the success rate is computed
by counting the frequency of successful ones of all trials.
In order to compare the proposed optimal controller with
othermethods such as LQR [13], theH2 [15] and theH∞ [16],
success rate of systems equipped with each controller is
measured. Numerical simulation is conductedwithMATLAB
(Mathworks, MA, USA) with integrator ode45.

The behavior of the nominal system and the l1 optimal sys-
tem in response to uneven terrains with the maximum slope
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FIGURE 3. The worst system output computed from l∞-induced norm of
the system for nominal and optimal system (‖Pnom‖∞ and ‖Popt‖∞,
respectively) and the worst output measured from numerical dynamic
simulation (‖znom‖∞ and ‖zopt‖∞, respectively) over ‖w‖∞ ∈ [0,3] deg.
‖z‖∞ are represented as mean and standard deviations of ten trials for
each condition.

change ‖w‖∞ ∈ [0, 3] deg are presented in Fig. 3. While
both the nominal and the optimal system can successfully
walk hundred steps in this range of disturbances, the proposed
method successfully reduces the system variations during
walking as expected. Moreover, actual worst system outputs
‖z‖∞ are well-bounded by the computed l∞-induced norms
in both the nominal and the optimal system (i.e., ‖Pnom‖∞
and ‖Popt‖∞). These results indicate that the proposed event-
based l1-optimal control can perform as effective tool for
robust walking on rough terrain.

The effect of the proposed method is more clear in Fig. 4,
where the maximum slope change is ‖w‖∞ = 5 deg. The
nominal system fails after 23 steps; the failure is shown as
the system trajectory approaches to θ̇ = 0 when θ > 0
in the phase portrait. This physically implies that the energy
injected by the ankle actuation is not enough to compensate
for the dissipated energy. Hence, the system cannot vault over
to make next step. In contrast, the event-based l1 optimal con-
troller updates κ at each step such that the ankle propulsion
adapts energy injection as needed so that themodel completes
hundred steps successfully. Furthermore, the results verifies
that ‖z‖∞ are well-bounded by the computed l∞-induced
norms ‖P‖∞. These observations obviously demonstrate that
system disturbance rejection is significantly improved by the
event-based l1-optimal control.
In order for comparison with other methods associated

with the Poincarè map, we conduct extensive simulations for
various ‖w‖∞ ∈ [3, 6] deg. In these simulations, we ran-
domly generate twenty different trials and compute the suc-
cess rate by the number of trials that the model completes
hundred steps out of the trials. The success rates of the nomi-
nal and l1 optimal systems together with those with different
types of event-based feedback controllers for each ‖w‖∞ are
presented in Table 2. It is obvious from Table 2 that the

FIGURE 4. Simulation results of the nominal and the optimal system over
‖w‖∞ = 5 deg. Top: system phase portrait (black, dotted line: trajectory of
models on rough terrain with ‖w‖∞ = 5◦, red, solid line: limit cycle on
level terrain). Bottom: system output at each step. Shaded regions
illustrate the l∞-induced norm ‖Pnom‖∞ and ‖Popt‖∞ for the nominal
and the optimal system, respectively.

proposed method with the event-based l1 optimal controller
leads to higher success rates than the nominal system and the
methods with theH2 and LQR.More importantly, the method
proposed in this paper makes the system successfully walks
on rough terrains at γmax = 4.8[deg], while the nominal
system and the methods with the event-based H2 optimal
controller and the event-based LQR show quite low success
rates. Hence, this tendency clearly implies that the method
with the l1 optimal event-based controller can be obviously
regarded as outperforming the methods with the event-based
H2 optimal controller and the event-based LQR (as well as the
nominal system) in biped walking on rough terrains. On the
other hand, in the comparison between the methods with the
event-based l1 optimal and H∞ optimal controllers, we can
observe that they have the completely same success rates
for all ‖w‖∞[deg] and thus one might not conclude from
the simulation results that the method with the l1 optimal
event-based controller is superior to that with theH∞ optimal
event-based controller. This observation can be interpreted
as arising from the fact that both the resulting event-based
controllers (i.e., the l1 and H∞ optimal controllers) have
numerically similar structures since the nominal system used
in the simulations is represented by a sort of single-input/
single-output (SISO) positive systems. Hence, the tendency
that the methods with the l1 and H∞ optimal event-based
controllers derive the same numerical results associated with
the success rates is a natural consequence of our numerical
example. More sophisticated comparison between these two
methods through numerical simulations is left for an interest-
ing future topic.

VI. APPLICATION: FAILURE PREDICTION
This section considers an extensive issue on possibility of the
proposed method to failure prediction. In this regard, we use
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TABLE 2. Success rate (%) of different systems over ‖w‖∞.

the simple walking model given in the preceding section but
now terrain height at each step varies (hk < hmax), not slope;
it should be remarked that the proposed framework can be
generalized to any type of (sequential) terrain disturbance as
long as it stays bounded.

From energy balance equation, one can derive threshold
post-collision velocity (θ̇+th ) of the model analytically,

1
2
m(Lθ̇+th )

2
+ mgL cos(α − γ )+ Ẽ ′in = mgL, (30)

where Ẽ ′in =
∫ 0
α−γ

τ (θ ) dθ and 2L sinα sin γ = −h
(see [20] for details). If the kinetic energy of the model
after collision is smaller than the corresponding thresh-
old value, the model fails to vault over and move
forward.

One can numerically solve (30) to express θ̇+th as a function
of h. The intersection between the analytic threshold velocity
and ‖Pnom‖∞ computed for a given ‖w‖∞ = hmax will
determine the threshold height hth. From this result, one can
predict that the model can overcome unknown disturbance
bounded by hmax < hth but would be likely to fail when
hmax ≥ hth. This result is illustrated in Fig. 5. Graphically
the threshold height for the nominal system is determined to
be hth,nom ∼ 0.043 m.

Since the proposed measure represents the worst perfor-
mance onemay expect, ‖Pnom‖∞ > θ̇+th should not be consid-
ered as a necessary condition to fall; rather, one may consider
‖Pnom‖∞ < θ̇+th as a sufficient condition not to fall. Indeed,
simulation experiment reveals that the model never falls with
hmax ≤ 0.04 (m), rarely falls with hmax = 0.045 (m), and
often falls with hmax ≥ 0.05 (m). Furthermore, the proposed
event-based l1 optimal controller increases the value of hth,opt
to ∼ 0.048 [m]. With this small change, the difference is
evident.

In practice, analytic expression of falling over is rarely
obtainable. Instead, one may design failure criteria as a
function of disturbance. If the failure threshold is properly
designed, then the proposed method allows for predicting
and maximum terrain roughness on which the bipedal robot
would fail as well as quantifying improvement by the optimal
control. In other words, the method allows to estimate stable
region for the robot from falling through such a procedure.
Moreover, if inner-loop system is designed with a stability
criteria such as ZMP as in [37], introduction of the l∞-
induced norm and design of optimal controller would bemore
straightforward.

FIGURE 5. The threshold post-collision velocity (black, solid), l∞-induced
norm of the nominal and the optimal system (‖Pnom‖∞ and ‖Popt‖∞,
respectively). The intersection of the l∞-induced norm and the threshold
post-collision velocity determines hth graphically.

VII. CONCLUSION
The main contribution of this paper is to introduce a sys-
tematic treatment of improving performance of bipedal robot
walking on rough terrains of which geometry varies every
step with some bounded magnitude. More precisely, we sug-
gest the l∞-induced norm defined on the linearized Poincarè
map as a performance analysis measure for the first time,
and proposed the event-based l1 optimal controller to adjust
parameters of inner-loop controller for minimizing the per-
formance measure. Furthermore, numerical simulations in
this paper demonstrated the effectiveness and validity of the
proposed performance measure and the optimal controller.

It should be noted that the disturbance treated by this
method is limited to those only discretely change at each foot-
step and of which influence remains the same while the foot
is in contact with the ground. Other classes of disturbances
such as continuous-time noises and parametric uncertainties
should be dealt with by other appropriate means. Applica-
tions of the proposed method to higher degrees-of-freedom
models and real platforms would be interesting future work.
In such application procedures, the approximation errors
derived from linearization of the nonlinear Poincarè map
should be rigorously treated. Extending the proposedmeasure
to design a high-level continuous-time feedback controller as
in [4], [7], [8], [38] would also be one of interesting future
directions.

APPENDIX
This appendix provides the proofs of the lemmas given in this
paper.

A. PROOF OF LEMMA 1
Note that the input-output relation of Pcl (given by (8)) is
described by

zk =
k−1∑
i=0

CclAk−1−i
cl Bclwi + Dclwk .
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This together with the definition of the l∞-induced norm
provided in the Introduction leads to

sup
‖w‖∞≤1

‖zk‖∞

= ‖
[
Dcl CclBcl CclAclBcl · · · CclAk−1

cl Bcl
]
‖∞.

(31)

Because the right-hand-side (RHS) of (31) is obviously
increasing as k becomes larger, it immediately follows that

max
k∈N0

sup
‖w‖∞≤1

‖zk‖∞

= ‖
[
Dcl CclBcl CclAclBcl CclAclBcl · · ·

]
‖∞.

This completes the proof.

B. PROOF OF LEMMA 2
It readily follows from the stability assumption of Acl that
‖Ak

cl‖∞ → 0 as k → ∞, and thus there exists a constant
M ∈ N0 of (13). Hence, the first assertion is proved.

For the proof of the second assertion, note that

‖
[
Ccl,iAN+1

cl Bcl Ccl,iAN+2
cl Bcl · · ·

]
‖∞

≤ ‖
[
Ccl,iAN+1

cl Ccl,iAN+2
cl · · ·

]
‖∞ · ‖Bcl‖∞

≤
‖Ccl,iA

[M ]
Ncl ‖∞ · ‖Bcl‖∞

1− ‖AM
cl ‖∞

= α
[M ]
N ,i . (32)

This together with the definition of the matrix∞-norm obvi-
ously completes the proof because

Pcl =
[
P−Ncl CclAN+1

cl Bcl CclAN+2
cl Bcl · · ·

]
. (33)

C. PROOF OF LEMMA 3
We first note that {w | ‖w‖2 ≤ 1} ⊂ {w | ‖w‖∞ ≤ 1}, where
‖·‖2 means the standard l2 norm of a vector sequence. It then
readily follows that

‖
[
Ccl,iAN+1

cl Bcl Ccl,iAN+2
cl Bcl · · ·

]
‖∞/2

≤ ‖
[
Ccl,iAN+1

cl Bcl Ccl,iAN+2
cl Bcl · · ·

]
‖∞ (34)

where ‖ · ‖∞/2 implies the induced norm from l2 to l∞. Here,
the left-hand-side (LHS) of (34) can be represented by

‖
[
Ccl,iAN+1

cl Bcl Ccl,iAN+2
cl Bcl · · ·

]
‖∞/2

= sup
‖w‖2≤1

‖
[
Ccl,iAN+1

cl Bclw0 Ccl,iAN+2
cl Bclw1 · · ·

]
‖∞

=

 ∞∑
k=N+1

(Ccl,iAk
clBcl)(Ccl,iAk

clBcl)
T

1/2

= (Ccl,iAN+1
cl Xcl(AT

cl)
N+1CT

cl,i)
1/2
= βN ,i, (35)

because the Cauchy inequality leads to(
∞∑
k=0

Ccl,iAN+k+1
cl Bclwk

)2

≤

∞∑
k=0

(Ccl,iAN+k+1
cl Bcl)(Ccl,iAN+k+1

cl Bcl)T ·
∞∑
k=0

wT
k wk .

Combining (35) and (33) completes the proof.
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