
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 366, Number 1, January 2014, Pages 51–74
S 0002-9947(2013)05845-X
Article electronically published on April 25, 2013

A COMPACTIFICATION OF THE SPACE

OF MAPS FROM CURVES

BUMSIG KIM, ANDREW KRESCH, AND YONG-GEUN OH

Abstract. We construct a new compactification of the moduli space of maps
from pointed nonsingular projective stable curves to a nonsingular projective
variety with prescribed ramification indices at the points. It is shown to be a
proper Deligne-Mumford stack equipped with a natural virtual fundamental
class.

1. Introduction

1.1. Overview and motivation. Let μ = (μ1, . . . , μn), μi ∈ Z≥1. In this paper,

we construct a new compactification, Ug,μ(X, β), of the space of all maps f from
genus g, n-pointed nonsingular projective curves (C, p1, . . . , pn) to a nonsingular
projective variety X, representing class β ∈ A1(X)/ ∼alg such that:

• f is unramified everywhere except possibly at p1, . . ., pn, where the rami-
fication indices of f are μ1, . . ., μn, respectively.

• f(pi), i = 1, . . ., n, are pairwise distinct.

Here we follow the convention that the ramification index of f at a point p ∈ C is
1 if f is unramified at p.

The boundary of Ug,μ(X, β) consists of suitable maps, still keeping the conditions
in a sense, from n-pointed prestable genus g curves to Fulton-MacPherson degen-
eration spaces of X. A Fulton-MacPherson degeneration space is, by definition, a
fiber of the “universal” family X[m]+ → X[m] of the Fulton-MacPherson configu-
ration space X[m] of m distinct labeled points in X, for some integer m (Definition
2.1.1). The elements in the moduli space are called stable ramified maps (Defini-
tion 3.1.1). They can be considered as stable log-unramified maps. Stable ramified
maps are always finite maps. We show that the moduli space Ug,μ(X, β) is a proper
Deligne-Mumford stack over an algebraically closed base field k of characteristic
zero, carrying a natural virtual fundamental class (Theorem 4.2.3 and Section 5).
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52 BUMSIG KIM, ANDREW KRESCH, AND YONG-GEUN OH

Therefore, we will be able to define ramified Gromov-Witten invariants (Section
5). This compactification incorporates four known spaces in algebraic geometry:
Fulton-MacPherson’s configuration space, Kontsevich’s stable map compactifica-
tion, Harris-Mumford’s admissible cover compactification, and Li’s compactifica-
tion of the moduli of stable relative maps. All of the four will play key roles in our
construction.

This paper is motivated by the third author’s discussions with Fukaya on a
similar compactification in the context of almost Kähler (or symplectic) geometry.
A further motivation is a conjectural link with BPS counts due to Pandharipande
(Section 5.2).

The main advantage of the algebro-geometric method exploited in this paper is
the systematic use of the wonderful property of the universal families of Fulton-
MacPherson spaces [6, 17], the notion of (log) admissible maps [8, 14, 19, 26], the
deformation theory for such maps [15, 23], as well as the now-standard tools in
Gromov-Witten theory in the algebro-geometric category [4, 7, 12, 16]. In [10], a
variant of this new compactification is shown to be a smooth irreducible proper
Deligne-Mumford stack, compactifying the space of maps from elliptic curves to a
projective space.

1.2. Conventions. Let k be a base field which is algebraically closed and of charac-
teristic zero. Every space will be a Noetherian k-scheme unless otherwise specified.
We often use W |T or h∗W to denote the fiber product W ×S T of algebraic spaces,
where h : T → S is the map in the fiber square. Except where otherwise mentioned,
R will denote the DVR k[[t]], with field of fractions K = k((t)). The extension over
R of an object over K will, without explicit mention, entail the passage to a finite
extension of K, by which R gets replaced by its integral closure in the extension
field.

2. Stacks of Fulton-MacPherson degeneration spaces

2.1. FM degeneration spaces. Let X be a nonsingular variety of dimension
r ≥ 1. Denote by X[n] the Fulton-MacPherson configuration space of n distinct
labeled points in X. We refer to the paper [6] for the constructions and the basic
properties of the configuration space. The space X[n] has the “universal family”

πX[n] : X[n]+ → X[n]

with disjoint sections

σi : X[n] → X[n]+

for i = 1, . . ., n. The universal space X[n]+ is an iterated blowup of X[n] × X
along smooth centers. Hence, there are two natural projections: πX[n] as mentioned
above, and

πX : X[n]+ → X

from the second projection.

Definition 2.1.1. A pair

(πW/S : W → S, πW/X : W → X)

of morphisms is called a Fulton-MacPherson degeneration space of X over a scheme
S (for short, an FM space of X over S) if:

• W is an algebraic space.
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A COMPACTIFICATION OF THE SPACE OF MAPS FROM CURVES 53

• There exists an étale surjective map T → S from a scheme T , an integer
n > 0, and a fiber square

W|T ��

��

X[n]+

πX[n]

��
T �� X[n]

such that the pullback of πW/X to W|T coincides with the composite

W|T → X[n]+ → X.

Furthermore, when S is Speck, we will simply say that W is an FM space of X.
When n is specified, we will call W a level-n FM space.

Example 2.1.2. Let S = SpecR = Speck[[t]], and let g be a morphism from S to
X × X. Suppose that only the closed point p ∈ S hits the diagonal Δ of X × X
under the map g; then there is a unique lift g̃ : S → X[2] = BlΔX ×X. Let k be
the intersection number of S and the exceptional divisor of X[2], and let q = g(p).
By definition, X[2]+ is the blowup of X[2] ×X along the proper transform of the
small diagonal Δ{1,2,3} of X×X×X. We see, by direct computation, that g̃∗X[2]+

is isomorphic, as an FM space over S, to the pullback of the blowup Bl(p,q)S ×X
of S ×X at the point (p, q), under the base change

S → S,

t �→ atk + o(tk)

for some nonzero a ∈ k.

One of the goals of Section 2 is to construct the Artin stack which parameterizes
FM spaces of X. To do so, we will recall some elementary properties of X[n],
X[n]+, and πX[n]. Using a variant of the FM configuration spaces, we will see that
the stack is described by means of a smooth groupoid scheme, and it will follow
that the stack is algebraic.

2.2. Basic properties of πX[n] : X[n]+ → X[n]. In [6], the space X[n] is con-
structed by an iterated blowup of Xn along nonsingular subvarieties ΔI for all
subsets I ⊂ N := {1, 2, . . . , n} with |I| ≥ 2, where ΔI is the proper transform of
the diagonal

{(x1, . . . , xn) ∈ Xn | xi = xj , ∀ i, j ∈ I}.
The blowup order of centers is suitably taken. For convenience, we use the following
notation.

Notation. Let V1 be the blowup of a nonsingular variety V0 along a nonsingular
closed subvariety Z. If Y is an irreducible subvariety of V0, we will use the same
notation Y to denote

• the total transform of Y , if Y ⊂ Z;
• the proper transform of Y , otherwise.

This abuse of notation causes no confusion as long as it is clear to which space
Y belongs.

The universal family X[n]+ is an iterated blowup

X[n]+ := Yn−1 → Yn−2 → · · · → Y0 := X[n]×X.
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The intermediate space Yk+1 is the blowup of Yk along all disjoint nonsingular
subvarieties ΔI+ for I ⊂ N and |I| = n− k, where I+ := I ∪ {n+ 1}.

2.3. A local description of πX[n]. Notice that in any stage Yk, ΔI+ is the
transverse intersection ΔI ∩ Δa+ if I ⊂ N , 2 ≤ |I| ≤ n − k and a ∈ I, where
a+ := {a, n + 1}. Also note that in each Yk, the intersection of Δa+ with every
fiber Fk of the natural projection Yk → X[n] is transverse. These observations
provide a local description of the projections πk+1 : Yk+1 → X[n] as follows. If p is
a singular point of the projection πk+1, then with respect to suitable coordinates
the induced map on completed local rings has the form

ÔπX[n](p)
∼= k[[t1, . . . , trn]] → Ôp

∼= k[[t1, . . . , trn, z1, . . . , zr+1]]/(z1z2 − t1),

ti �→ ti,

and the completed local ring of the fiber Fk at the point corresponding to p can be
identified with k[[z1, z1z3, . . . , z1zr+1]].

Projective tangent bundle map. Since the general fiber of πX[n] is just X, there

is an induced rational map from P(T (X[n]+/X[n])|(X[n]+)sm), the projectivization
of the relative tangent sheaf restricted to the locus of smooth points of πX[n], to
P(TX). From the local description it follows that this is actually a morphism

P(T (X[n]+/X[n])|(X[n]+)sm) → P(TX).

On the level of fibers it says that if W is an FM degeneration space and p is a
smooth point of W , then P(TpW ) is identified naturally with P(TπW/X(p)X). This
identification is independent of the choice of the isomorphism of W and a fiber of
the universal family πX[n] : X[n]+ → X[n].

2.4. Trees of FM degeneration spaces. Notice that an FM space of X := P1
k

without markings over k is a connected genus 0 nodal curve with a distinguished
component P1

k. In that case there is a natural dual tree graph corresponding to
the prestable curve. Likewise, for an FM space W of a nonsingular variety X, we
associate a tree whose vertices (resp. edges) correspond one-to-one to components
of W (resp. W sing); see Figure 1. The distinguished vertex corresponding to the
component, a blowup of X, is called the root of the tree. For a given vertex, the
number of edges of the minimal chain connecting the root and the vertex will be
called the level of the corresponding component of W . Let us call a component
of W an end if it is not the root component and the valance of its vertex is 1. A
component of W will be called ruled if it is not the root and its vertex has valance
2. The descendants of a component with associated vertex are by definition the
components of higher level for which the minimal chain connecting the root and
the associated vertex contains v. For each nonroot component Y of W , we denote
by D+(Y ) the divisor of Y corresponding to the edge which connects the vertex
of Y to the vertex at a lower level. The + sign in D+(Y ) is explained by the fact
that the intersection number of any curve on Y and the divisor is strictly positive
unless the curve also lies on the component one level higher. Here the intersection
number is taken in the nonsingular variety Y . Similarly, we define D−(Y ) when Y
is a ruled component. Nonroot components of W will also be called screens.
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Figure 1. An FM degeneration space and its corresponding tree graph.

2.5. Automorphisms. An FM degeneration W of X over Speck is called a sta-
ble degeneration in [6] since every ruled (resp. end) screen contains at least one
(resp. two) marked point(s). We will forget about markings and consider the au-
tomorphism groups that then arise. Define an automorphism of W/X to be an
automorphism ψ of W fixing X, that is, πW/X ◦ ψ = πW/X . Since there are no
markings in W , the automorphism group Aut(W,X) is nontrivial if there is an
end component. For example, the group is G

r
a � Gm if the tree of W has only

two vertices. Note that each end (resp. ruled) component Y is (noncanonically)
isomorphic to Pr

k (resp. the blowup of Pr
k at a point) with a marked divisor D+(Y )

(resp. D±(Y )). The automorphism group of an end (resp. ruled) Y fixing D+(Y )
(resp. D±(Y )) is a subgroup, isomorphic to G

r
a � Gm (resp. Gm), of Aut(W,X),

where the notation Gm (resp. Ga) is for the multiplicative (resp. additive) group
k× (resp. k). So, for general (W,X), we see that

Aut(W,X) ∼=
( ∏

Wi: ruled

Gm

)
×

( ∏
Wi: ends

G
r
a �Gm

)
.

More generally, for an FM degeneration spaceW ofX over S we may analogously
define Aut(W/S,X), at least as a presheaf of groups. In case W → S is projec-
tive, one may use relative Hilbert schemes (for example, see [11]) to conclude that
Aut(W/S,X) is represented by a group scheme over S. It is at least an algebraic
space in general, as a consequence of the results in the rest of this section.

2.6. Operations. Forgetting markings. Since only the labeling of points matters,
we also use the notation X[M ] for X[m] if M is a set of cardinality m. For example,
X[N ] will be used instead of X[n], where N = {1, . . . , n}. There is a natural
iterated blow-down map X[N ] to X[J ] × XN\J if J ⊂ N . By similar reasoning,
there is a natural blow-down map X[N ]+ → X[J ]+ × XN\J . To see the latter,
we may assume that J = N − 1, that is, {1, . . . , n − 1}. Then, by the results of
L. Li on rearrangements of centers [17], X[N ]+ coincides with the iterated blowup
of X[J ]+ × X along ΔT , n ∈ T , |T | ≥ 2, where |T | ≥ 3 whenever n + 1 ∈ T .
(X[N ]+ is an iterated blowup of XJ × X2 along centers which form a building
set {ΔT : T ⊂ N + 1, T 
= {a, n + 1}, a ∈ N}. Then using a building set order
satisfying ΔT1

≺ ΔT2
if n ∈ T2 \ T1, we see that X[N ]+ is the iterated blowup

of X[J ]+ × X along ΔT , n ∈ T , |T | ≥ 2, where |T | ≥ 3 whenever n + 1 ∈ T .)
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Combined with projections, we obtain natural forgetful maps X[N ] → X[J ] and
X[N ]+ → X[J ]+.

By forgetting a point labeled by, say, n + 1, there is a natural commutative
diagram

X[N + 1]+
π+ ��

πX[N+1]

��

X[N ]+

πX[N]

��
X[N + 1]

π �� X[N ].

It induces a map π̃+ : X[N + 1]+ → X[N + 1]×X[N ] X[N ]+.

Lemma 2.6.1. The map π̃+ is an isomorphism over the open locus of X[N + 1]
where π+ ◦ σn+1 meets neither any σi, i = 1, . . ., n, nor the relative singular locus
of X[N ]+/X[N ].

Proof. We note that Δi+ in X[N +1]+ coincides with the proper transform of Δi+

in X[N ]+×X for i = 1, . . ., n. Hence π+ ◦σi = σi ◦π, and the result is established,
for otherwise there would be an unstable locus in X[N+1]+/X[N+1], which would
be a contradiction. �
Lifting. Let g be a map from S to X[n] and let h be a section of g∗X[n]+. Assume
that the image of h meets neither the relative singular locus of X[n]+/X[n] nor

any sections σi ◦ g, i ∈ N . Then there is a unique lift h̃ : S → X[n + 1] of h,
since X[n + 1] is the blowup of X[n]+ along the images of sections σi. We note

that the S-scheme g∗X[n]+ is canonically isomorphic to the S-scheme h̃∗X[n+1]+

preserving σi, i = 1, . . ., n, due to Lemma 2.6.1 and the diagram

X[n+ 1]

��

X[n+ 1]+

��

��

X[n]+

�� ���
���

���
�

���
���

���
�

S g
��

h

������������

h̃

���
�

�
�

�
�

�
�

X[n] X[n]+.��

This diagram is commutative, except for the trapezoid. The trapezoid however
commutes if it is restricted to the image Δ{n+1,n+2} of the section σn+1. This

implies that σn+1 ◦ h̃ coincides with h when h̃∗X[n+1]+ is identified with g∗X[n]+.
The iterated operation of liftings will be a key tool in Section 4.

Proposition 2.6.2. Let fi : S → X[n] be a morphism of k-schemes. Suppose that
there is an isomorphism between f∗

i X[n]+, i = 1, 2, fixing X and preserving the n
induced sections. Then f1 = f2.

Proof. This can be seen by the universal property of Theorem 4 in [6] and the nat-
ural identification IΔJ

|x ∼= ((TxX)J/Tx)
∗, where IΔJ

is the ideal sheaf of diagonal
ΔJ of XJ and x ∈ X = ΔJ ⊂ XJ , for J ⊂ N , |J | ≥ 2. (See page 195 of [6] for a
friendly explanation of the universal property and its relation with screens.) Let f
denote fi followed by the map X[N ] → XN . Then, étale locally at a point which
is mapped into ΔS in XJ , we can express the data f∗IΔJ

→ LJ
∼= OS by sending

xi,j − xi′,j to σi,j − σi′,j for i, i′ ∈ J ⊂ N , j = 1, . . ., r, where xi,j are (copies of)
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A COMPACTIFICATION OF THE SPACE OF MAPS FROM CURVES 57

coordinates of the i-th component X of Xn, and σi,j , j = 1, . . ., r are fiberwise
direction coordinates of X[J ]+, pulled back via the composite of the sections σi

with the forgetting map

π̃+ : X[N ]+ → X[N ]×X[J] BlΔJ+ (X[J ]×X).

We are thus reduced to showing that the given isomorphism induces an isomor-
phism between the f∗

i (X[N ] ×X[J] BlΔJ+ (X[J ] ×X)), i = 1, 2. This follows from
the claim that for any S → X[N ] the following base change property holds:

(1S × π̃+)∗OS×X[N]X[N ]+
∼= OS×X[J]BlΔ

J+
(X[J]×X),

Rp(1S × π̃+)∗OS×X[N]X[N ]+ = 0 for p > 0.

(The assertion about direct image would suffice, but the following reduction step
also uses the vanishing of the higher direct images.) It suffices to treat the case
J = N−1, and since π̃+ is a proper morphism of flat X[N ]-schemes, a cohomology-
and-base-change argument as in §II.5 of [20] allows us to reduce to the case S =
Speck. Then 1S × π̃+ is (when it is not an isomorphism) a proper morphism of
FM degeneration spaces contracting a ruled component or an end component. In
either case, the argument proceeds using the Theorem on Formal Functions: for
the direct image, by a computation in local coordinates, and for the higher direct
images, as in the proof of Theorem I.9.1(ii) of [3]. �

2.7. Spaces X[n : m] and X[n : m]+. In this subsection we define a com-
pactification X[n,m] of the configuration space of pairs of black colored n or-
dered points in X and red colored m ordered points in X. Let N + M denote
{1b, . . . , nb} � {1r, . . . ,mr}, a collection of n “black numbers” and m “red num-
bers”. We will call the labels of N black and the labels of M red. Then we want
to compactify (

XN \
⋃

B⊂N : |B|=2

ΔB

)
×

(
XM \

⋃
R⊂M : |R|=2

ΔR

)
,

allowing red points to collide with black points but not allowing any two points
with the same color to coincide. A “universal family” can be constructed by an
iterated blowup of X[n,m]×X along smooth centers. The centers will be proper
transforms of suitable diagonals in the morphism X[n,m]×X → Xn ×Xm ×X.
Those diagonals are

• ΔI+ with |Iblack||Ired| ≥ 2, Iblack := I ∩N and Ired := I ∩M ,
• ΔB+ with |B| ≥ 2, B ⊂ N ,
• ΔR+ with |R| ≥ 2, R ⊂ M ,

where A+ = A ∪ {n+m+ 1}.
The detail of the construction is as follows. First, let X[1, 1] = X2. Now X[n,m]

and its universal family will be defined inductively. Start withX[n,m]×X and blow
it up along ΔI+ and then ΔB+ and ΔR+ . By [17], any order of the blowups along
centers of each type will give the same outcome as long as the blowup along ΔI+

1

is taken before the blowup along ΔI+
2

whenever |I1| > |I2|. Denote by X[n,m]+

the result of the blowups. Then Δi+b
and Δi+r

provide sections σib and σir of

X[n,m]+ → X[n,m]. Now define X[n,m+ 1] to be the blowup of X[n,m]+ along
all Δ{b,r}+ and then all Δr+ . We mark the last label as (m+ 1)r. Similarly, define
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58 BUMSIG KIM, ANDREW KRESCH, AND YONG-GEUN OH

X[n+ 1,m] to be the blowup of X[n,m]+ along all Δ{b,r}+ and then all Δb+ . We
mark the last label as (n+ 1)b. In fact, X[n,m] is the closure of

Xn+m \
⋃
Δ

Δ

in

Xn+m ×
∏
Δ

BlΔX
n+m,

where Δ runs over all diagonals except those of type Δb,r, b ∈ N and r ∈ M .
The claims above can be justified by directly modifying the arguments in [6] or by
L. Li’s general approach to the wonderful compactification [17].

Define X[n : m] to be the maximal open subset of X[n,m] such that the restric-
tion of the universal family X[n,m]+ to the subset is still stable after forgetting
red markings but keeping the black markings, and vice versa. Here “stable” means
by definition that every fiber has only the trivial automorphism fixing X and the
remaining marked points. Denote by X[n : m]+ the restriction of the fibration
X[n,m]+ → X[n,m] to X[n : m].

Lemma 2.7.1. The image of a map g : S → X[n1, n2] is in X[n1 : n2] if and only
if g∗X[n1, n2]

+ is isomorphic to g∗i X[ni]
+ preserving ni-sections and fixing X, for

i = 1, 2, where gi is the composite S
g→ X[n1, n2] → X[ni].

Proof. For i = 1, 2, there is the naturally induced map

hi : X[n1, n2]
+ → X[n1, n2]×X[ni] X[ni]

+

over X[n1, n2]. Then X[n1 : n2] is the maximal open subset of X[n1, n2] over which
h1 and h2 are isomorphisms. �

Proposition 2.7.2. Consider g1 : S → X[N ], N = {1b, . . . , nb}, with extra sec-
tions σi, i ∈ M = {1r, . . . ,mr}, of g∗1X[N ]+ such that the extra sections meet
neither each other nor the relative singular locus of g∗1X[N ]+/S. Then it induces a
unique map g : S → X[N,M ] such that canonically, g∗X[N,M ]+ ∼= g∗1X[N ]+ pre-
serving N-labeled sections and fixing X; the extra sections coincide with the sections
from the second label M .

Furthermore, if each geometric fiber of g∗1X[N ] is stable with respect to markings
by σi, i ∈ M , then canonically g∗X[N,M ]+ ∼= g∗2X[M ]+ preserving M -labeled

sections and fixing X, where g2 is the natural composite S
g→ X[N,M ] → X[M ].

Proof. The proof of the first statement follows from the inductive use of the argu-
ment similar to the one given in Section 2.6.

S

g1

�� σ1r ����
���

���
��

������������

		�����
������

������
������

������
���



�����������������������

X[N ] X[N ]+�� X[N, 1]�� X[N, 1]+�� X[N, 2] · · ·��

The second statement is an immediate consequence of Lemma 2.7.1. �
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A COMPACTIFICATION OF THE SPACE OF MAPS FROM CURVES 59

2.8. Definition of X[n]. Let X[n] denote the stack of FM spaces of level n over
(Sch/k). It follows from Propositions 2.6.2 and 2.7.2 that X[n] ∼= [X[n : n] ⇒ X[n]],
the stackification of the prestack associated to a groupoid scheme

X[n : n]
t
⇒
s
X[n].

The groupoid scheme is equipped with obvious maps s and t, diagonal map e :
X[n] → X[n : n], “composition” m : X[n : n] t×s X[n : n] → X[n : n], and
exchange map i : X[n : n] → X[n : n]. The stack is algebraic and smooth by
Proposition 4.3.1 in [13], which requires that s and t are smooth and the relative
diagonal (s, t) : X[n : n] → X[n] × X[n] is separated and quasi-compact; these
conditions are easily checked.

There is also a variantX[n : n]m ofX[n : n] form ≤ n, defined as a subscheme by
the condition σib = σir for i = 1, . . ., m, or alternatively by a blowup construction.
This leads to the stack X[n]m ∼= [X[n : n]m ⇒ X[n]] of FM spaces with m sections,
locally defined by the given m sections plus n−m additional sections. There is the
forgetful morphism X[n]m → X[m].

In the particular case n = m + 1, there is another variant X[m + 1]′m of FM
spaces withm sections and marked component, locally defined by the given sections
plus one more lying on the marked component. As a groupoid, X[m + 1]′m

∼=
[X[m+ 1 : m+ 1]′m ⇒ X[m+ 1]], where X[m+ 1 : m+ 1]′m is the open subscheme
of X[m+ 1 : m+ 1]m where the black and red (m+ 1)-st sections lie on the same
component.

There is, further, the open substack X[m+ 1]′′m of X[m+ 1]′m where the marked
component is that of the m-th section. It is also an open substack of X[m+1]m, and
if we define X[m+ 1]′′ to be the locus in X[m+ 1] where the m-th and (m+ 1)-st
sections lie on the same component, with X[m+1 : m+1]′′m the common preimage
in X[m + 1 : m + 1]′m, then X[m + 1]′′m

∼= [X[m + 1 : m + 1]′′m ⇒ X[m + 1]′′]. A
further open substack is X[m] ∼= [X[m + 1 : m + 1]′′′m ⇒ X[m + 1]′′′], where the
FM space with m sections is itself stable. Here X[m + 1]′′′ is the complement in
X[m+1]′′ of the divisor Δm,m+1 where the m-th and (m+1)-st sections have come
together. We will also use the forgetful morphism X[m + 1]′m → X[2]1 forgetting
the first m− 1 sections, given via groupoids as

[X[m+ 1 : m+ 1]′m ⇒ X[m+ 1]] → [X[2 : 2]1 ⇒ X[2]],

as well as the isomorphism X[m + 1]′′m
∼= X[m] × [A1/Gm] given by forgetful mor-

phism (first factor) and divisor Δm,m+1 ⊂ X[m + 1]′′ mentioned above (second
factor). The multiplicative group Gm acts in the standard way on A1 with quo-
tient stack [A1/Gm] parametrizing pairs consisting of a line bundle with a regular
section. Note that an effective Cartier divisor canonically determines such a pair.

3. The stack of stable ramified maps

3.1. Stable ramified maps. We introduce a generalized notion of stable maps.
For the basic definitions and properties of stable maps, the reader may see, for
example, [7]. From now on, we assume that X is a nonsingular projective variety
over k. Let

NE1(X) ⊂ A1(X)/ ∼alg
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denote the semigroup of effective curve classes modulo algebraic equivalences. Given
β ∈ NE1(X), g, n ∈ Z≥0, and μ = (μ1, . . . , μn), μi ∈ Z≥1, we define:

Definition 3.1.1. A triple

((C, p1, . . . , pn), πW/X : W → X, f : C → W )

is called a stable map with μ-ramification from an n-pointed, genus g curve to an
FM degeneration space W of X, representing class β (for short, a (g, β, μ)-stable
ramified map) if:

• (C, p1, . . . , pn) is an n-pointed, genus g prestable curve over k.
• πW/X : W → X is an FM degeneration of X over k.
• The pushforward (πX ◦ f)∗[C] of the fundamental class [C] is β.
• The following four conditions are satisfied:

(1) Prescribed Ramification Index Condition:
• The smooth locus Csm of C coincides with the inverse image f−1(W sm)
of the smooth locus W sm.

• f |Csm is unramified everywhere possibly except at pi.
• At pi the ramification index

length(mpi
/mf(pi)Opi

) + 1

of f is exactly μi.
(2) Distinct Points Condition: f(pi), i = 1, . . ., n are pairwise distinct points

of W .
(3) The Admissibility Condition: At every nodal point p of C, there are iden-

tifications Ôf(p)
∼= k[[z1, . . . , zr+1]]/(z1z2) and Ôp

∼= k[[x, y]]/(xy), so that

f̂∗ sends z1 to xm and z2 to ym for some positive integer m.
(4) Stability Condition:

• For each ruled component Wr of W , there is either an image of a
marking in Wr (that is, f(pi) ∈ Wr for some i) or a nonfiber image
f(D) ⊂ Wr of an irreducible component D of C.

• For each end component We
∼= P

r of W , there are either images of
two distinct markings in We or a nonline image f(D) ⊂ We of an
irreducible component D of C.

Lemma 3.1.2. Let W be a target of a (g, β, μ)-stable ramified map f : C → W .
Then the number of components of W is bounded above by an integer depending
only on X, β, g and n. So also is the number of components of C.

Proof. First assume that W = X is the projective line P1
k, C is a genus g nodal

curve not necessarily connected, d is a positive integer, and f : C → W is a degree
d map whose restriction to each connected component is stable. Then the sum of
the number of nodal points of C, ramification points of f , and marked points is less
than or equal to 2d− 2 + 2g + 2n.

Now we come to the general case that W is an FM-degeneration space of a
nonsingular projective variety X. Choose an embedding X ↪→ PN

k . Let Wk, W≥k

be the set of all level-k, resp. level-k-and-higher, screens, C≥k the preimage of W≥k

under f , and Ck the stabilization of C≥k → W≥k → Wk. By considering a general
projection to P

1
k such that the composite C0 → W → X ��� P

1
k is well defined,

stable, and collapses no components not already collapsed by the map to X, we see
that |W1| ≤ 2d−2+2g+2n, where d is the degree of β. Note that the total degree
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of C in each level-one screen (understood as a degree in Pr
k after blowdown) is less

than or equal to d. By the Admissibility Condition and the Stability Condition,
the sum of the total degree and the number of marked points of C in each level-two
screen is less than or equal to d+n−1. By the same reasoning, the sum of the total
degree and the number of marked points of C in a level-k screen is less than or equal
to d+ n− k+ 1. Therefore the level of any screen can be at most d+ n. This fact,
combined with the bound |Wk| ≤ 2(d− 1 + g + n)

∏
1≤i≤k−1 2(d+ g + n− i), leads

to a bound on the total number of components of W , and since each component
supports the image of at most d components of C, also a bound on the number of
components of C. �

3.2. The families of stable ramified maps. Given β ∈ NE1(X), g, n ∈ Z≥0,
and μ = (μ1, . . . , μn) where μi ∈ Z≥1, we define a family version of stable ramified
maps.

Definition 3.2.1. A triple

((π : C → S, {p1, . . . , pn}), (πW/S : W → S, πW/X : W → X), f : C → W)

is called an S-family of stable maps with μ-ramification from n-pointed, genus g
curves to an FM degeneration space W of X, representing class β if:

• (π : C → S, {p1, . . . , pn}) is a family of n-pointed, genus g prestable curves
over S.

• (πW/S : W → S, πW/X : W → X) is an FM degeneration of X over S.
• The data form a commutative diagram

C f ��

π
��	

		
		

		
	 W

πW/X ��

πW/S��












X

S

such that over each geometric point of S, it is a (g, β, μ)-stable ramified
map.

• Prescribed Ramification Index Condition: f has ramification index μi at pi.
• The Admissibility Condition: For any geometric point t of S, if p is a nodal
point of Ct and two isomorphisms are given as

Ôf(p)
∼= ÔπS(p)[[z1, . . . , zr+1]]/(z1z2 − s), for some s ∈ ÔπS(p)

and

Ôp
∼= ÔπS(p)[[x, y]]/(xy − s′), for some s′ ∈ ÔπS(p),

then

f̂∗(z1) = α1x
m, f̂∗(z2) = α2y

m

for some units αi in Ôp with α1α2 ∈ ÔπS(p) and a positive integer m.

Remark 3.2.2. Let C and W be as above. Then we say that f : C → W has
ramification index � at a smooth point p : S → C if we have equality of sheaves of
ideals

f∗(If(p(S)))Ôp(s) = I�
p(S)Ôp(s)

for all s ∈ S.
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Remark 3.2.3. The Admissibility Condition, which is called the Predeformability
Condition in [14], was introduced and studied by J. Li in his construction of a
stable relative map and relative Gromov-Witten invariants. When the target is one-
dimensional, the notion of admissibility was introduced in [8] and well studied in [19]
by log structures ([9]); the analogous log structures in the case of higher-dimensional
targets are studied in [22]. As explained in §3.7 in [19] and in Simplification 1.7
in [15], we may let α1 = α2 = 1 in Definition 3.2.1 for a suitable isomorphism

Ôp
∼= ÔπS(p)[[x, y]]/(xy − s′).

From now on, we use abbreviations of the imposed conditions on stable ramified
maps, for example, PRIC for the Prescribed Ramification Index Condition.

Lemma 3.2.4 (Tangent Line Map Condition). Let f be a family of stable ramified
maps as in Definition 3.2.1. PRIC and AC together imply that there is a natural
extension

P(Tf) : C → P(TX)

of the projectivization of the induced map T (C/S)sm → T (W/S)sm between tangent
bundles.

Proof. This is a local property. PRIC (resp. AC) will imply that P(Tf) is well
defined at smooth points (resp. at singular points) of π : C → S. First, at a smooth
point p of C/S, let x be an S-relative uniformizing parameter, locally defining
the section pi if p = pi for some i. Since the image of p is a smooth point q,
we also have t1, . . . , tr, S-relative uniformizing parameters at q. The submodule
(f∗dt1, . . . , f

∗dtr) of the stalk of ΩC/S at p is generated by xm−1dx if m is the
ramification index of f at p. Hence

[x−(m−1)f∗dt1, . . . , x
−(m−1)f∗dtr]

is regular at p since there is no jump of the ramification indices at p. In other
words, f∗ΩW/S → ΩC/S(−

∑
(mi − 1)pi) is surjective on the smooth locus of C/S.

At a singular point of C/S, the map f satisfies AC:

A[[z1, . . . , zr+1]]/(z1z2 − s) → A[[x, y]]/(xy − s′),

sending z1 �→ α1x
m, z2 �→ α2y

m, where A = Ôπ(p). Using the local description
of πX[n] and the projective tangent map given in Section 2.3, we may assume that
W = Yk+1 and Fk = X. We also compute that P(Tf) is

[m,mz3 + x
∂z3
∂x

, . . . ,mzr+1 + x
∂zr+1

∂x
]

for x 
= 0 and

[m,mz3 − y
∂z3
∂y

, . . . ,mzr+1 − y
∂zr+1

∂x
]

for y 
= 0. Since x ∂/∂x = −y ∂/∂y is a regular derivation of A[[x, y]]/(xy − s′), it
follows that the rational map P(Tf) : C ��� P(TX) is also well defined at nodal
points. �
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3.3. Construction of Ug,μ(X, β). Define a category Ug,μ(X, β) of (g, β, μ)-stable
ramified maps to FM degenerations of X; it is a CFG over the étale site (Sch/k).
A morphism is a commutative diagram

C′ f ′
��

���
��

��
�

��

W ′

��



���
���

�
�� X

S′

��

C f ��

����
���

�� W

�����
���

�
�� X

S

preserving markings, where the squares to each side of S′ → S are cartesian. It is
straightforward to see that this CFG is a stack.

Definition 3.3.1. An S-family of stable μ-ramified maps to a fixed target
X[�]+/X[�] from n-pointed genus g curves is a stable n-pointed genus g map
(C → S, {p1, . . . , pn}, f : C → X[�]+) with a commutative diagram

C f ��

����

X[�]+

��
S �� X[�]

satisfying PRIC, DPC, AC, and SC.

Let β be a curve class in NE1(X), and also denote by β the induced class
in NE1(X[�]+) using any canonical inclusion X ⊂ X[�]+ as a general fiber of
X[�]+ → X[�].

Proposition 3.3.2. The stack Mg,n(X[�]+/X[�], β)μ of stable μ-ramified maps to
a fixed target X[�]+/X[�] from n-pointed genus g curves, representing class β, is a
separated finite-type Deligne-Mumford stack over k.

Proof. Since the moduli of (g, β)-stable maps toX[�]+ is a proper Deligne-Mumford
stack, it is enough to show that, given a family f of stable maps over S, representing
class β, there is a locally closed subscheme Z of S such that for any T → S, the
pullback f |T is a T -family of stable ramified maps (with fixed target X[�]+/X[�])
if and only if T → S factors through Z.

First, take the maximal open locus S1 of S where f does not send any compo-
nent of any geometric fiber of C to the relative singular locus of X[�]+/X[�], and
furthermore DPC is satisfied. Then there is a natural closed subscheme S2 of S1

representing a functor of admissible stable maps. This can be shown by the proof
of Theorem 2.11 in [14] (or one may use §3C in [19]). Now take the maximal open

locus S3 of S2 where f∗Ω†
X[�]+/X[�] → Ω†

CS3
/S3

is surjective, where Ω†
X[�]+/X[�] and

Ω†
CS3

/S3
are the sheaves of relative log differentials induced from the log structures

of the boundary divisors. In order to take care of PRIC, introduce relative uni-
formizing parameters zj , j = 1, . . ., r of Of(pi(t)) at f(pi(t)) where t is a point of
an étale chart of S3, and let z be a relative parameter of Opi(t) at pi(t). Then,
define the closed subscheme S4,i of S3 by equations a0,j = 0, . . ., aμi−1,j = 0, for
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all j, where f∗(zj) = a0,j + a1,jz + · · · ∈ Opi
, ak,j ∈ Ot. Then take the maximal

open subscheme S5 of
⋂

i S4,i, where, restricted to every geometric fiber Ct, f has
ramification order exactly μi at pi(t). Now Z is the maximal open subscheme of
S5 where SC is satisfied. �
Corollary 3.3.3. The stack Ug,μ(X, β) is a finite-type Deligne-Mumford stack.

Proof. We apply Theorem 4.21 in [5], using that by Lemma 3.1.2 for sufficiently
large � we have Ug,μ(X, β) → X[�] and an isomorphism

Mg,n(X[�]+/X[�], β)μ ∼= Ug,μ(X, β)×X[�] X[�].

We need to check the following conditions:
(1) The diagonal map of the stack is representable, quasi-compact, separated

and unramified. Using the isomorphism, the first three properties follow from
Proposition 3.3.2 (see [2, Lemma C.5]); the last property follows from SC.

(2) There is a scheme U and a smooth surjective map U → Ug,μ(X, β). This
again follows from Proposition 3.3.2. �

4. Properness

4.1. Preliminary results.

Lemma 4.1.1. Let (f : C → X[m]+, p1, . . . , pn) be a stable ramified map over K
with partial stabilization (C, p1, . . . , pn) → (C′, p′1, . . . , p

′
n) of prestable curves, an

extension of the latter to (C′
, p̄′1, . . . , p̄

′
n) over R, and a chosen component E ⊂

C′
0. Then there exists an open U ⊂ C′ ×SpecR C′

whose special fiber U0 satis-
fies ∅ 
= U0 ⊂ E × E, such that for any sections (σ1, σ2) : SpecR → U , adding
these to obtain SpecK → X[m + 2] and forgetting the first m sections yields
C → X[m]+|SpecK ∼= X[m+ 2]+|SpecK → X[2]+ such that the stabilization (C′′ →
X[2]+, p′′1 , . . . , p

′′
n, σ

′′
1 , σ

′′
2 ) extends over R to C′′ → X[2]+ with the extended σ′′-

sections landing in the same component of C′′
0 , and the induced C′ ��� X[2]+ re-

stricts to a nonconstant map on E.

Proof. We easily reduce to the case C′ = C. Then we write (C, p̄1, . . . , p̄n) for

(C′
, p̄′1, . . . , p̄

′
n). There exists an open V ⊂ C ×SpecR C disjoint from the diagonal of

C, the sections p̄i on both factors, and the preimage in C ×SpecK C of the diagonal
of X[m]+, the m sections, and the relative singular locus of X[m]+/X[m] on both
factors, with special fiber V0 nonempty and contained in E ×E, such that there is
a morphism

V → X[m+ 2]

extending the obvious one on SpecK ×SpecR V . By symmetry the generic point
of V0 maps into X[m + 2]′′, so by further shrinking V preserving the condition
∅ 
= V0 ⊂ E × E, we may suppose V irreducible and smooth over SpecR with its
image contained in X[m + 2]′′. By construction the image of SpecK ×SpecR V is
contained in X[m + 2]′′′, which means that the divisor Δm+1,m+2 of X[m + 2]′′

pulls back to e · V0 for some integer e ≥ 0.
We claim that V ×SpecR C → X[2]+ extends to a map

φ : V ×SpecR C ��� X[2]+,

well defined on an open subset containing the points (u, u′, u) and (u, u′, u′) for
general (u, u′) ∈ V0. Given this, we then may define U by deleting from V the points
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(u, u′) ∈ V0 for which φ is not defined at (u, u′, u) or at (u, u′, u′). Then the desired

conclusion holds since the extension C′′ → X[2]+ mentioned in the statement of
the lemma may be obtained by resolving the indeterminacy of φ ◦ ((σ1, σ2)× 1C) :

C ��� X[2]+ and stabilizing.
To prove the claim, we let B denote the image of V by the first projection

morphism to C. There is a unique morphism B → X[m + 1] through which the
composite morphism V → X[m + 2]′′ → X[m + 1] factors. Then for B → X[m +
1] × [A1/Gm] on the second factor given by the divisor e · B0, if we let W → B
denote an FM space corresponding to it under the isomorphism X[m + 2]′′m+1

∼=
X[m + 1] × [A1/Gm], then there is a morphism X[m + 2]+|V → W , fitting into a
cartesian diagram with V → B, compatible with m + 1 sections and fixing X. By
stability the restriction X[m+2]+|SpecK×SpecRV → SpecK×SpecRW is compatible
with the unique morphisms to X[m]+|SpecK preserving m sections and fixing X.
Forgetting the firstm sections, we obtain a level-2 FM space Z over B and morphism
W → Z compatible withX[m+2]+|V → X[2]+|V . Then we obtain B×SpecRC ��� Z
compatible with V ×SpecR C ��� X[2]+|V in the sense that if D ⊂ B ×SpecR C is

open on which the map to Z is well defined, then V ×SpecR C ��� X[2]+|V will be
well defined on V ×B D, together fitting into a commutative diagram. We may take
D to contain the generic point of E ×E. Then we clearly have (u, u′, u′) ∈ V ×B D
for general (u, u′) ∈ V0. �

Lemma 4.1.2. Let (f : C → X[m]+, p1, . . . , pn) be a stable ramified map over K
such that the usual stable map compactification has a component E of the closed
fiber mapped into a relative singular locus of X[m]+/X[m]. Then there exists a
neighborhood U of the generic point of E such that for any section σ : SpecR →
U , we have C → X[m]+|SpecK ∼= X[m + 1]+|SpecK whose extension fits into a
commutative diagram

C′ ��

c

��

X[m+ 1]+

��
C �� X[m]+

of stable maps over R, where c is a contraction, such that the lifted section σ′ :

SpecR → C′
meets the component E′ ⊂ C′

0 corresponding to E ⊂ C0.

Proof. As in the proof of Lemma 4.1.1, there exists an open V ⊂ C and a morphism
V → X[m + 1] lifting SpecR → X[m] such that the induced V → X[m + 1]′m
factors up to a 2-isomorphism through SpecR. The last conclusion follows from a
description of X[m+1]′m in a neighborhood of a point where the marked component
is ruled with no sections. Taking I ⊂ {1, . . . ,m} to be the set of sections on all
the descendants of the marked component and g = 0 to be a defining equation for
ΔI ⊂ X[m] in a neighborhood U of the image point, then an open neighborhood in
X[m+1]′m may be identified with the stack in which an object consists of a morphism
to U , a pair of line bundles each with a regular section, and a trivialization of the
tensor product of the line bundles taking the product of the sections to the function
g. Then there is the extended FM space W → SpecR, and we may take U to be
the complement in V of the indeterminacy locus of C ��� W . �
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4.2. Valuative criteria. We want to show that the stack Ug,μ(X, β) of stable
ramified maps is proper over k. We do this by using the valuative criterion for
properness stated in [5], by first verifying the existence of extensions as indicated
and then checking that the valuative criterion for separatedness is satisfied.

Proposition 4.2.1. Given an n-pointed stable ramified map (f,p) over the quotient

field K of a DVR R, there is a stable ramified map extension (f̃ , p̃) of (f,p),

namely, (f̃ , p̃) is a stable ramified map defined over a DVR R′ which is the integral

closure of R in a finite extension K ′ of K and (f̃ |K′ , p̃) ∼= (f,p)|K′ .

It is enough to prove the above when R = k[[t]]. Let R = k[[t]] from now on in
this section.

Proof of Proposition 4.2.1 when dimX = 1. Let W/K be the pullback of the uni-
versal family X[m]+ by a map SpecK → X[m]. Then, using the image of the
marked points under C → W → X[m]+, there is an induced map SpecK → X[m :
n]. Thus, we may assume that W is the pullback of X[n]+ under g : SpecK → X[n]
such that f ◦pi = σi ◦g. Now take the usual stable map limit of this f : C → X[n]+.
The extension is a stable ramified map as shown in the proof of Theorem 4 in [8]
using Abhyankar’s Lemma (which removes any possible dimension 1 branch locus
in the special fiber), the purity of the branch locus (which removes any possible
dimension 0 branch locus), and the universal covering of an Al-singularity (which
shows the admissibility). �
Local analysis. Let (π : C → SpecR, {p1, . . . , pn}, f : C → X) be an ordinary stable
map over SpecR such that:

• Restricted to the generic fiber CK , f is a stable μ-ramified map.
• Restricted to the closed fiber C0, f is no longer μ-ramified.

Here W = X × SpecR. Assume that dimX = r ≥ 2 and C is irreducible. Then
only the following cases are possible unless some pair of markings have the same
image over the closed point of SpecR:

(1) (Jump of a ramification index) There exists a smooth point p on a compo-
nent of C0 noncontracted under f such that the ramification index jumps
at p.

(2) (Creation of a nodal point) There exists a nodal point p of C0 such that
any component of C0 containing p does not contract under f .

(3) (Contraction of a component) There exists a contracted component E of
C0 and there exist no pair of ramification markings approaching E.

Lemma 4.2.2. In Case (1) or Case (2), the tangent line map

P(Tf) : C ��� P(TX)

is not well defined at p. In Case (3), P(Tf)(E) is not a point or there is a point
q ∈ E such that P(Tf) is not well defined at q.

Proof.

Case 1. Letm be the ramification index of f |C0
at p, and let x, t be local parameters

of Op, where t is the local parameter of R. Let f = (f1, . . . , fr) after introducing a
local coordinate system of X at f(p). Without loss of generality, we assume that
the tangent line direction of the image curve of x-axis under f(x, 0) is [1, 0, . . . , 0] ∈
Pr−1 = P(Tf(p)X). Consider the equation ∂f1

∂x = 0. It defines a curve Z not
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L

x-line

t-line
y-line

Figure 2. (δ, ν)-plane

containing the x-axis, but containing the origin (x, t) = (0, 0). If the curve has at
least two irreducible components, then f is generically unramified along one of the
components by assumption of stable ramified maps. Hence along the component,
P(Tf) approaches a point different from [1, 0, . . . , 0]. If the curve Z is irreducible,
then along the curve, P(Tf) approaches a point different from [1, 0, . . . , 0] since the

generic point of the curve is a zero of multiplicity m − 1 of ∂f1
∂x , while the generic

point cannot be a zero of multiplicity m− 1 or higher of the derivative ∂fi
∂x for all

i 
= 1 (otherwise, along the curve, f has ramification index at least m).

Case 2. The domain surface C is étale locally defined by the relation xy = tk at
(0, 0, 0) for some positive integer k, with π(x, y, t) = t. Furthermore, f(x, y, t) ∈
R[[x, y]]⊕r, f(x, 0, 0) 
= 0, and f(0, y, 0) 
= 0. We may suppose that f(0, 0, t) = 0.
The argument is based on the set of lattice points (δ, ν) of monomials xδtν (δ ≥
−ν/k, ν ≥ 0) appearing in f (Figure 2).

There is a line L containing two distinct exponents xαitβi , i = 1, 2 of f with

α1 > 0, β1 ≥ 0, α2 < 0, β2 ≥ −kα2,

and with all exponents of f contained in the closed half-plane bounded below by
L. We define � = −(β1 − β2)/(α1 − α2). Notice that � < k, since the half-plane
contains a lattice point corresponding to a power of y. If, among all exponents
xαtβ , (α, β) ∈ L, there is some pair for which the coefficient vectors of f are
linearly independent, then P(Tf)(x, y, t) approaches different points along paths

(x, y) = (ct�, c−1tk−�)

as c ∈ k× varies. In this case, P(Tf)(p) is not well defined.
Otherwise there is a constant tangent direction along such paths, which without

loss of generality we take to be [1, 0, . . . , 0] ∈ Pr−1 = P(Tf(p)X). Putting

x = zt�, y = z−1tk−�,

we have

f(zt�, z−1tk−�, t) = t
α1β2−α2β1

α1−α2 g(z, t)

for some g = (g1, . . . , gr) ∈ k[z, z−1][[t]]⊕r with gi(z, 0) = 0 for i ≥ 2, while g1(z, 0)
is a Laurent polynomial containing at least one positive and one negative power of
z. It follows that there exists c ∈ k× such that ∂g1

∂z vanishes at (c, 0). We are in
the situation of Case 1: f is generically unramified, and P(Tf) approaches a point
different from [1, 0, . . . , 0], on any irreducible component of the curve defined by
∂g1
∂z = 0.
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Case 3. Set p = f(E). We suppose that P(Tf)(E) is the point [1, 0, . . . , 0] ∈ Pr−1 =
P(TpX). We may choose a projection to P1 from X, defined in a neighborhood of
p, so that with p′ the image of p in P

1, the image in Tp′P
1 of (1, 0, . . . , 0) ∈ TpX

is different from zero, the composite f ′ : C → P1 is well defined, stable, and over
SpecK is a stable ramified map, and the only irreducible components of C0 mapping
by f ′ to p′ are those mapping to p by f . Now we consider the stable ramified limit
C′ → W over SpecR of C′ → P1 over SpecK. There exists a component E′ ⊂ C′

0

over E ⊂ C0 (i.e. mapping into E via stabilization C′ → C) containing a smooth
point that is a ramification point of C′

0 → W0 and is not the limit of any of the pi.
A pair of general sections approaching E′ gives rise to a new target space X[2]+

and a new stable map limit C̃ → X[2]+.
The hypothesis concerning P(Tf)(E) implies that the image of every irreducible

component of C̃0 over E meeting (X[2]+)sm is a line intersecting (X[2]+)sing = Pr−1

at [1, 0, . . . , 0]. Now, considering the new target space P
1[2]+ with its stable map

limit C̃′, on which there is the component Ẽ′ corresponding to E′ ⊂ C′
0, we see using

Lemma 4.1.1 that there is a corresponding component Ẽ ⊂ C̃0, over E, having as
its image a line in X[2]+ and a ramification point which is not the limit of any of
the pi. We conclude by the argument of Case 1. �
Proof of Proposition 4.2.1 when dimX ≥ 2. We assume that the target W is
X[m]+|SpecK for some given SpecK → X[m]. By Lemma 3.2.4 we have the tan-
gent line map P(Tf) : C → P(TX) and hence its ordinary stabilization with the n
markings

P(Tf)′ : C′ → P(TX),

where C′ is a suitable contraction of C. With stable map extension C′ → P(TX)

(with n markings) we apply Lemma 4.1.1 to each component Ei of C
′
0 to get open

sets U (i) ⊂ C′×C′
, where we may suppose U (i)

0 ⊂ (Esm
i ×Esm

i )\ΔEsm
i

for i = 1, . . .,

c where c denotes the number of components of C′
0. There is an open subset U of

the product of the U (i), with U0 
= ∅, on which we may apply Proposition 2.7.2 to
obtain SpecK → X[m, 2c] with X[m, 2c]+|SpecK ∼= W .

Arguing as in the proof of Lemma 4.1.1, we see that for a general section

SpecR → U the stable map extension C′′ → X[2c]+ × P(TX) of the map C →
X[2c]+ × P(TX) (the composite C → X[m, 2c]+ → X[2c]+ on the first factor,
and the map P(Tf) on the second factor) has the property that the composite

C′′ → X[2c]+ × P(TX) → X[2c]+ remains stable. Hence the same holds if we
extend by using n + 2c sections; we therefore obtain the stable map extension

C′′ → X[n+ 2c]+.
Over K we have X[m,n+2c]+ → X[n+2c]+ contracting only ruled components.

Correspondingly, on C → C′ each contracted component has a line nonfiber image
of some end rational component of C, joined by a chain of P1’s to a component that
survives in C′. Let j denote the total number of collapsed ruled components. We
may put back these collapsed components by adding j sections. Indeed, if we let
I denote the set of subsets of N � {1, . . . , 2c} describing the image of SpecK →
X[n+2c], then the target X[m,n+2c]+|SpecK is contained in a closed substack of
X[n+ 2c+ j]n+2c isomorphic to( ⋂

I∈I
ΔI

)
× (BGm)j ,
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where BGm denotes the classifying stack of Gm. Hence we have X[n + 2c +
j]+n+2c|SpecK ∼= W , determined up to an element of (k((t))×)j . The isomorphism
class over SpecR is therefore determined by j integers. These are uniquely de-
termined by the requirement that each line image of a rational end component
mentioned above should in the limit tend to a nonfiber image, with at least one line
per component tending in the limit to a nonfiber image not contained in the rela-
tive singular locus. For such an R-point of X[n+2c+ j]+n+2c we consider a lift over
SpecK to X[n+ 2c+ j] which factors through X[m : n+ 2c+ j] (compatibly with

SpecK → X[m]) and use this to determine a stable map limit C′′′ → X[n+2c+j]+

over R.
Using Lemmas 4.1.2 and 4.2.2 it follows from the stability condition on C′′′ →

X[n+2c+ j]+ that in the special fiber there are no contracted components. Some
finite number of components may be mapped to lines in relative singular loci of
X[n + 2c + j]+/X[n + 2c + j]. If the number of such components is k, then we

obtain by repeated use of Lemma 4.1.2 a target W̃ := X[n + 2c + j + k]+|SpecR
with isomorphism W̃|SpecK ∼= W , such that the stable map limit C̃ → W̃ fulfills
the conditions of the proposition. Indeed, AC is automatically satisfied by Proposi-
tion 2.2 of [14], PRIC holds by Lemma 4.2.2, we have DPC because the n sections

are among those defining the target W̃ , and SC holds by construction, using Lemma
4.2.2. �

Finally we come to the main result of the paper.

Theorem 4.2.3. The stack Ug,μ(X, β) of (g, β, μ)-stable ramified maps to FM de-
generation spaces of X is a proper Deligne-Mumford stack over k.

Proof. It remains only to verify the valuative criterion for separatedness; then
properness follows from Proposition 4.2.1. Assume that for i = 1, 2 we have stable
ramified maps fi : Ci → Wi, withWi = g∗i X[ni]

+ for some gi : SpecR → X[ni], and
an isomorphism of stable ramified maps over K, i.e., pair of isomorphisms (ϕ, ψ)

ϕ : C1|SpecK → C2|SpecK , ψ : W1|SpecK → W2|SpecK

satisfying

ψ ◦ f1|SpecK = f2|SpecK ◦ ϕ,

where ψ fixes X and ϕ preserves the n sections of the Ci. By the uniqueness of the
extension of ordinary stable maps, it suffices to verify that targets W1 and W2 are
isomorphic by an extension of ψ. To do so, we use the Tangent Line Map Condition.

By Lemma 3.2.4, we have the tangent line map

P(Tfi) : Ci → P(TX)

and hence its ordinary stabilization with the n markings

P(Tfi)
′ : C′

i → P(TX),

where C′
i is a suitable contraction of Ci. Since the n-pointed stable maps P(Tf1)

′

and P(Tf2)
′ are equivalent over K, they are equivalent over R. Hence there is an
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isomorphism ϕ′ : C′
1 → C′

2 satisfying that:

• the diagram

C1|K
ϕ ��

��

C2|K

��
C′
1|K

ϕ′|K �� C′
2|K

commutes,
• P(Tf1)

′ = P(Tf2)
′ ◦ ϕ′, and

• the n markings are preserved under ϕ′.

We consider all components of the closed fiber of C′
1; for each such component,

there is the corresponding one in the closed fiber of C1. Consider two general
points on each such component and two sections passing through those points.
These sections together with the n markings form n+ 2c sections of C1 → SpecR,
where c is the number of components of the closed fiber of C′

1. By ϕ′, we obtain
the corresponding sections of C2 → SpecR. Using DPC, we may assume that
the images of those n + 2c sections under fi are pairwise distinct. Now applying
Proposition 2.7.2 to gi with those n + 2c sections, we obtain an isomorphism of
contractions of W1 and W2.

Let j denote the number of contracted components of Wi → X[n+2c]+ over K,
and let us add j new sections as described in the proof of Proposition 4.2.1. Notice
that the choice of expanded target, up to isomorphism, is determined completely
by restriction over K of the given (Ci,Wi). Hence we obtain an isomorphism of
contractions of Wi restricting to an isomorphism over K.

By the uniqueness of a stable map extension, the number of components of the
special fiber of Ci landing in the relative singular locus of X[n + 2c + j]+ is the
same for i = 1, 2. Let us call it k and now add k new sections of C1 → SpecR
and the corresponding ones of C2 → SpecR. We claim that the induced maps
SpecR → X[ni, n + 2c + j + k] are in fact in X[ni : n + 2c + j + k]. Stability is
clear for any screen containing a nonline image, since it will then have two out of
the 2c markings. It remains only to consider ruled screens containing none of the
n markings and only line images. Then there is some nonfiber line image. If it is
a limit of nonfiber line images on a ruled component over K, then it will be stable
by one of the j sections. Otherwise the nonfiber line maps to a line in a singular
component of X[n + 2c + j]+, and hence there will be one of the k sections. This
shows that W1 and W2 are isomorphic under an extension of ψ. �

5. Ramified Gromov-Witten invariants

5.1. Obstruction theory. The approach to relative obstruction theory suggested
by J. Li at the beginning of §1.2 of [15] can be worked out in the case of the moduli
stack of stable ramified maps using Olsson’s deformation theory of log schemes [23].
If (C → S,W → S, f : C → W) is a family of ramified stable maps, then we have
natural log structures MC/S on C, MW/S on W and NC/S and NW/S on S making
(C,MC/S) → (S,NC/S) and (W ,MW/S) → (S,NW/S) log smooth morphisms.
Following §3B of [19] there is a canonical log structure N on S, associated to the
monoid pushout NC/S ⊕N ′ NW/S , where N ′ is the submonoid of NC/S ⊕ NW/S
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generated by (m · log(s′), log(s)) for every node of the geometric fibers of C →
S. Also, if we let (C,M) denote the log scheme obtained as the fiber product
(C,MC/S)×(S,NC/S) (S,N), then there is, canonically, f∗MW/S → M , making

(C,M) ��

��

(W ,MW/S)

��
(S,N) �� (S,NW/S)

a commutative diagram of fine log schemes [9].

Proposition 5.1.1. Let S = SpecA and let I be an A-module. Consider a square
zero extension B of A by I. Let f : C → W be a stable ramified map over S. Let
(C̃ → S̃, {p̃1, . . . , p̃n}) and (W̃ → S̃, W̃ → X) be extensions of (C → S, {p1, . . . , pn})
and (W → S,W → X) over S̃ = SpecB, let q̃i : S → W be extensions of qi := f ◦pi
for i = 1, . . ., n, and let Ñ be a fine log structure on S̃ extending the log structure

N on S, together with morphisms N C̃/S̃ → Ñ and NW̃/S̃ → Ñ extending the ones
over S. Then there is a natural element

ob(f, I) ∈ H1(C, f∗T †
W(−μ1p1 − · · · − μnpn)⊗OS

I)

of an obstruction to an extension to a stable ramified map f̃ : C̃ → W̃ over S̃ such

that Ñ ′ and Ñ ′ → NW̃/S̃ are compatible with the given N C̃/S̃ → Ñ and NW̃/S̃ → Ñ .
When the obstruction vanishes, the extensions f̃ satisfying the compatibility are a
torsor under

H0(C, f∗T †
W(−μ1p1 − · · · − μnpn)⊗OS

I).

Proof. We use Theorem 5.9 in [23]. To enforce PRIC, we replace W with the
(nonseparated) union

W ∪W\{q1,...,qn} Bl{q1,...,qn}W ,

where the log structure is the standard one on W and the standard one plus the
exceptional divisor on Bl{q1,...,qn}W . Then f is replaced by a map f ′ sending
C \ {p1, . . . , pn} to W and by the lift to Bl{q1,...,qn}W in a neighborhood of pi
(which is well defined by Remark 3.2.2), and near pi we have an identification of

log tangent sheaves f ′∗T †
Bl{q1,...,qn}W

∼= f∗T †
W(−μipi). �

By standard machinery we have a perfect obstruction theory ([4])

Rπ∗(f
∗T †

W(−μ1p1 − · · · − μnpn))
∨ → L•

Ug,μ(X,β)/B

relative over the base stack B of curves (prestable n-pointed of genus g), FM spaces
of X with n-tuples of smooth pairwise distinct points, fine log structures, and pairs
of morphisms of log structures

(C → S,W → S,N,NC/S → N,NW/S → N).

By Theorems 1.1 and 4.6 and Corollary 5.25 of [21] and Proposition 2.11 of [23], the
stack B is algebraic and pure-dimensional, so by [4] there is a virtual fundamental
class [Ug,μ(X, β)]vir. Alternative ways to define a virtual fundamental class are by
adding auxiliary log structures ([10]; see also [18]) or orbifold structures ([1]).
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Using the natural morphism

Tei : Ug,μ(X, β) → P(TX),

we define ramified Gromov-Witten invariants by∫
[Ug,μ(X,β)]vir

∏
ψai
i Te∗i (γi),

where ψi are gravitational descendants associated to the i-th marking and γi are co-
homology classes of P(TX). These invariants are deformation invariant just like the
usual Gromov-Witten invariants. When μ = (1, . . . , 1) = (1n), we write Ug,n(X, β)

for Ug,μ(X, β) and speak of unramified Gromov-Witten invariants.

5.2. Pandharipande’s conjectures. In this subsection let k be the field of com-
plex numbers. For threefold targets, R. Pandharipande has proposed a conjectural
link between unramified Gromov-Witten invariants and certain integer quantities
that can be defined with usual Gromov-Witten theory. A consequence would be
the following statement.

Conjecture 5.2.1. Let X be a smooth projective three-dimensional algebraic va-
riety and β a curve class on X with

∫
β
c1(TX) > 0. Then the unramified Gromov-

Witten invariants on X defined by integral cohomology classes on X, without grav-
itational descendants, are integers.

Let us call a curve class locally Fano if it has a positive intersection number with
the anticanonical class. Generalizing the BPS counts from string theory, Pandhari-
pande defined numbers ng,β(γ1, . . . , γn) which for locally Fano β are given by

∑
g≥0

ng,β(γ1, . . . , γn)λ
2g−2

(
sin(λ/2)

λ/2

)2g−2+
∫
β
c1(TX)

=
∑
g≥0

〈γ1, . . . , γn〉g,βλ2g−2,

where the 〈γ1, . . . , γn〉g,β are usual Gromov-Witten invariants and λ is a formal
variable (see [24, 25]). He conjectured that the ng,β(γ1, . . . , γn) are integers, pro-
vided that the γi are integral cohomology classes. This was proved in the locally
Fano case by Zinger [27].

According to Pandharipande, the unramified Gromov-Witten invariants in lo-
cally Fano curve classes of cohomology classes on X should yield BPS counts di-
rectly. Notice that by Zinger’s result, this statement would imply Conjecture 5.2.1.

Conjecture 5.2.2. If β is a locally Fano curve class on a nonsingular projective
threefold X, then for any cohomology classes γ1, . . ., γn on X,∫

[Ug,n(X,β)]vir

∏
e∗i (γi) = ng,β(γ1, . . . , γn).
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