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Abstract—A Verilog model is proposed for 

transmission lines to perform the all-Verilog 

simulation of high-speed chip-to-chip interface system, 

which reduces the simulation time by around 770 

times compared to the mixed-mode simulation. The 

single-pulse response of transmission line in SPICE 

model is converted into that in Verilog model by 

converting the full-scale analog signal into an 11-bit 

digital code after uniform time sampling. The receiver 

waveform of transmission line is calculated by adding 

or subtracting the single-pulse response in Verilog 

model depending on the transmitting digital code 

values with appropriate time delay. The application of 

this work to a USB 2.0 high-speed PHY interface 

reduces the simulation time to less than three minutes 

with error less than 5% while the mixed-mode 

simulation takes more than two days for the same 

circuit.   

 

Index Terms—Verilog, transmission line, USB 2.0 

high-speed PHY, mixed-mode simulation   

I. INTRODUCTION 

The data rate of chip-to-chip interface is increased 

over several hundreds of Mbps or several Gbps recently, 

because of the ever-increasing requirement of data-

bandwidth of electronic equipments. For the high-speed 

chip-to-chip interface, a transmission line is used to 

connect chips [1]. The circuit simulation is required to 

send out the designed chip for fabrication. For the circuit 

simulation the chip-to-chip interface system, the chips 

are described mostly in Verilog netlist and the 

transmission line is described in SPICE netlist. Therefore, 

a mixed-mode simulator such as SPECTRE is used for 

the simulation of chip-to-chip interface. It takes an 

excessively long time to perform the mixed-mode 

simulation of the circuit, which contains both Verilog and 

SPICE netlist, For example, it takes around two days to 

finish the mixed-mode simulation of a USB 2.0 high-

speed interface for the time interval of 3us with a recent 

desktop PC. For the simulation of chip-to-chip interface, 

the MATLAB model [2] or the Verilog-AMS model [3, 

4] were used. In the MATLAB model, the simulation 

time is much shorter than the mixed-mode simulator such 

as SPECTRE, since both transmission line and chip are 

modeled in MATLAB. However, because the chip is 

modeled usually in Verilog, it is inconvenient to convert 

the Verilog chip model to the MATLAB chip model. In 

the Verilog-AMS model, the Verilog chip model is used 

unchanged. However, the simulation time of the Verilog-

AMS model is almost the same as the mixed-mode 

simulator such as SPECTRE, since the transmission line 

is described by the Verilog-A language in the Verilog-

AMS model [5, 6]. 

In this work, to reduce the simulation time while 

keeping the Verilog chip model, the SPICE netlist of 

transmission line is converted into a Verilog netlist. This 

work takes less than three minutes to perform the above-

mentioned simulation of the USB 2.0 high-speed 

interface. Section II shows the procedure to convert the 

SPICE netlist of transmission line into a Verilog netlist. 

Section III presents the simulation results of this work for 

the USB 2.0 high-speed chip-to-chip interface. Section 
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IV concludes this work. 

II. VERILOG OF TRANSMISSION LINE 

1. SPICE Model of Transmission Line 

 

A differential transmission line is mostly used for the 

serial-link chip-to-chip interface, such as USB, SATA, 

PCIe, MIPI, HDMI and Display Port.  

The transmission line has a low-pass characteristic 

because of the dielectric loss and the skin effect loss. 

That is, the higher-frequency component is more severely 

attenuated by transmission line than the lower frequency 

component. 

This phenomenon is modeled by a lossy transmission 

line model (W model) in SPICE. Fig. 1 shows the SPICE 

netlist of a differential lossy transmission line, where 

N=2 refers to the differential line. The ‘usb2_cable.rlc’ 

file contains the model parameter values of a lossy 

transmission line, which are represented by six 2-by-2 

matrices shown in Fig. 2. Table 1 shows the values of the 

lossy transmission line parameters of Fig. 2 for a USB 

2.0 cable. 

If a differential input voltage of {+0.5exp(jwt), -

0.5exp(jwt)} is applied at the differential input nodes at 

x=0 (IN_P, IN_N) of Fig. 1, the differential voltage 

OUT(x, t) at a position x and a time t can be represented 

by  

 

 ( )
( , ) O Ojw t L L C xOUT x t e e α− −

=   (1a) 

 
2 2

skin dielectric

O O O O

R G

L C L C
α = +  (1b) 

 

where no reflection is assumed because of the RX 

termination. 

The attenuation constant alpha is determined by the 

skin effect parameter Rskin and the dielectric loss 

parameter Gdielectric. Rskin and Gdielectric are represented by 

the lossy transmission line model parameters(Ro, Rs, Go, 

Gd), which are included in the ‘usb2_cable.rlc’ file. 

 

 skin O SR R R f= +            (2a) 

 dielecctric O dG G G f= +  (2b) 

 

2. Conversion of a Single-pulse Response from SPICE 

to Verilog 

 

In this work, a SPICE single-pulse response PR(t) is 

calculated by using SPECTRE and then the SPICE 

single-pulse response is converted into a Verilog single-

pulse response D_PR(t). D_PR(t) is used to get the 

received waveform at RX for any digital data transmitted 

at TX. To get the SPICE single-pulse response PR(t), the 

SPECTRE [7] simulation is performed for the SPICE 

model part enclosed by the dashed line shown in Fig. 

3(a), which includes the chip pin parasitic and the 

transmission lines. The TX driver is assumed to be an 

ideal CML driver, and the RX front-end consists of an 

ideal differential comparator. For this, a single current 

pulse is applied to IINP(t) of Fig. 3(a) while IINN(t) 

remains at zero, as shown in Fig. 4. Then, the RX input 

waveform VRX(t) from SPECTRE simulation is 

converted into a SPICE single-pulse response PR(t) by 

eliminating the transmission line delay (time of flight tF), 

as shown in Fig. 5. T is an input data period. That is, 

 

 ( ) ( )RX FPR t V t t= +            (3) 

 

While the non-zero response starts from t = tF in  

 

Fig. 1. A lossy differential transmission line. 

 

 

Fig. 2. Model parameter of a lossy differential transmission 

line. 
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VRX(t), it starts from t = 0 in PR(t). This SPICE single-

pulse response PR(t) is sampled in uniform time steps 

and the sampled values are stored as the Verilog single-

pulse response D_PR(t) for a few data periods. 

 

3. Verilog Model of Transmission Line 

 

The SPICE model part of Fig. 3(a) is converted into a 

Verilog model, as shown in Fig. 3(b). The SPICE model 

part includes the transmission line, the CML driver, and 

the parasitic components. Also, the analog differential 

comparator of Fig. 3(a) is converted into the digital 

comparator of Fig. 3(b). In this way, all the components 

in the chip-to-chip interface are described entirely in 

Verilog. The Verilog single-pulse response D_PR(t) is 

used to get the receiver input waveform RX_IN(t) at RX 

for any digital data DIN(nT) transmitted at TX. At every 

data period of t=nT, either a positive or negative single-

pulse response ( + D_PR(t) or – D_PR(t) ) is delayed by 

nT and added to RX_IN(t) for the TX digital data 

DIN(nT) of 1 or 0, respectively. This can be expressed as 

 

0

_ [10 : 0]( ) ( ){2 ( ) 0.5}
n

RX IN t PR t nT DIN ntT
∞

=

= − ∗ −∑  

  (4) 

 

This superposition of single-pulse response can be 

performed since the transmission line is a linear-time-

invariant(LTI) system. The Verilog single-pulse response 

D_PR(t) corresponds to an impulse response of LTI 

system, as can be seen in Eq. (4). Eq. (4) is a convolution 

function. Fig. 6 shows how to find the RX_IN(t) 

 

(a) 

 

 

(b) 

Fig. 3. (a) SPICE model, (b) Verilog model of transmission 

line. 

 

 

Fig. 4. Input and output waveforms of the SPICE model (Fig. 

3(a)). 

 

 

Fig. 5. Derivation of a SPICE single-pulse response PR(t) from 

VRX(t). 

 

 

Fig. 6. Superposition of a Verilog single-pulse response 

(D_PR(t)) to find the receiver input waveform RX_IN[10:0](t) 

for the TX digital output (DIN(nT)). 
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waveform by the linear superposition for the TX output 

data of ‘100101’. 

III. APPLICATION TO USB 2.0 HIGH-SPEED 

PHY SIMULATION 

1. Verilog Model of USB 2.0 Cable 

 

The proposed Verilog model of transmission line is 

applied to the USB 2.0 high-speed PHY simulation. Two 

USB 2.0 high-speed PHY chips (TX_Digital and 

RX_Digital) are connected through a USB cable, as 

shown in Fig. 7. Both TX_Digital and RX_Digital blocks 

are described entirely in Verilog. The transmission line 

part is also described in Verilog by using the method 

proposed in this work.  

To find the SPICE single-pulse response PR(t) of a 

USB 2.0 cable by using SPECTRE, a lossy transmission 

line is used. The parameters of lossy transmission line 

model (W model), which are included in the RLGC file, 

are shown in Table 1. A π-shaped pin parasitic model 

with a 3nH inductor and two 1.5pF capacitors is also 

included in the USB cable model. For three USB 2.0 

cables with different lengths(1m, 3m, 5m), a transient 

SPECTRE simulation is performed to find PR(t). A 

single current pulse of 18mA is applied to IINP(t) of 

transmitter (Fig. 3(a)) during one data period of 500Mbps. 

The analog PR(t) waveforms for the three USB cables 

are shown in Fig. 8(a), where tF1, tF2, andtF3 are the times 

of flight of each USB cable. Also, the frequency 

responses of USB cables are presented in Fig. 8(b). The 

digital D_PR(t) waveform is stored in a file named 

‘Single_Pulse_Response.txt’ in a 11-bit resolution, 

starting from t = 0until t = 5T in ten ps steps. T is a data 

period(2ns) of 500Mbps. Only five data periods are 

stored for D_PR(t) since the ISI component of a single-

pulse response is negligible after five data periods, as 

shown in Fig. 8(a). 

The Verilog code to calculate the 11-bit receiver input 

waveform RX_IN[10:0](t) by using (4) is presented in 

Fig. 9. Only five preceding data values including the 

current one are used for the RX_IN computation. The 

RX_IN[10:0](t) output from the Verilog code is shifted 

 

Fig. 7. Chip-to-chip interface through a USB 2.0 high-speed PHY [9]. 

 

 

                         (a)                                                  (b) 

Fig. 8. A transient pulse response (a) and a frequency magnitude response, (b) of USB 2.0 cable. 
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by tF in time axis for the final result. 

 

2. Comparison of this work with SPECTRE simulation 

 

To verify the validity of this work, a single-pulse 

response of receiver input waveform is compared 

between this work and SPECTRE. Excellent agreements 

can be observed with the maximum relative error of 

4.05% as shown in Fig. 10(a). 

To simulate the real environment, the input 

data(IN_DATA[7:0]) stream of Fig. 7 is extracted by 

applying a USB protocol analyzer to a real USB 2.0 

high-speed interface between a memory stick and PC, 

starting from the plug-in time until the memory stick 

device is recognized by PC after the device configuration 

stage is completed [8]. It takes around 3us in a real USB 

2.0 high-speed interface. The extracted IN_DATA[7:0] 

stream for the entire 3us interval is applied both to the 

Verilog model(Fig. 3(a)) of this work and SPECTRE (Fig. 

3(a)). The data rate of 500Mbps with a 5m USB 2.0 cable 

is used in this simulation. The eye patterns from this 

simulation are compared in Fig. 11, which shows 

excellent agreements. The receiver output data(OUT_ 

DATA[7:0] of Fig. 7) are obtained from Verilog 

simulation of this work, and are presented in Fig. 12 for 

the very initial part of the 3us simulation. Exact matches 

can be found between the TX input data(IN_DATA[7:0]) 

and the RX output data. The simulation statistics are 

 

Fig. 9. Verilog model for USB 2.0 Cable. 

 

Table 1. W model parameters of USB 2.0 cable 

 

 

 

 

(a) 

 

 

(b) 

Fig. 10. Comparison between this work and SPECTRE with 5m 

USB 2.0 cable (a) single-pulse response, (b) response to 

‘1011000100’ input. 
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compared in Tables 2 and 3. This work is faster than 

SPECTRE by around 770 times. 

IV. CONCLUSIONS 

The SPICE netlist of transmission line is converted 

into a Verilog model in the chip-to-chip USB 2.0 high-

speed PHY interface to reduce the simulation time by 

around 770 times compared to the SPECTRE mixed-

mode simulation. It takes less than 3 minutes to simulate 

the entire period(~3us) of device configuration stage of 

USB 2.0 high-speed interface, while it takes more than 2 

days with SPECTRE. The USB 2.0 interface circuit used 

in this work consists of a TX digital part, a USB 2.0 

cable and a RX digital part. 

Both the TX and the RX digital parts are modeled in 

Verilog for both this work and SPECTRE. The USB 2.0 

cable is modeled in Verilog for this work and in SPICE 

netlist for SPECTRE. A single-pulse response of five 

data periods is calculated by SPECTRE and stored in a 

file. The stored single-pulse response is linearly added or 

subtracted with appropriate delays to calculate the 

receiver input waveform depending on the TX data 

values. The receiver input waveform is represented in a 

11-bit digital code. Excellent agreements are observed 

between this work and SPECTRE in waveforms, eye 

patterns and code values. 

 

 

 

Fig. 11. Comparison of eye patterns (a) SPECTRE, (b) this 

work of USB 2.0 Descriptor, (c) SPECTRE, (d) this work of 27-

1 test pattern, (e) SPECTRE, (f) this work of 215-1 test pattern,

(g) SPECTRE, (h) this work of 231-1 test pattern. 

 

 

Fig. 12. Received digital output code (OUT_DATA[7:0]) from 

simulation of this work. 

 

 

Table 2. Comparison of simulation statistics between this work 

and SPECTRE 

 

 

Table 3. Comparison of simulation statistics between this work 

and SPECTRE of USB 2.0 Descriptor, PRBS 27-1, 215-1 and 

231-1 Test pattern 
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