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DJ-1 promotes angiogenesis and osteogenesis
by activating FGF receptor-1 signaling
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Communication between osteoblasts and endothelial cells is essential for bone fracture
repair, but the molecular identities of such communicating factors are not well defined. Here
we identify DJ-1 as a novel mediator of the cross-talk between osteoblasts and endothelial
cells through an unbiased screening of molecules secreted from human mesenchymal stem
cells during osteogenesis. We show that DJ-1 stimulates the differentiation of human
mesenchymal stem cells to osteoblasts and that DJ-1 induces angiogenesis in endothelial
cells through activation of fibroblast growth factor receptor-1 signalling. In a rodent model of
bone fracture repair, extracellular application of DJ-1 enhances bone regeneration in vivo by
stimulating the formation of blood vessels and new bones. Both these effects are blocked by
antagonizing fibroblast growth factor receptor-1 signalling. These findings uncover previously
undefined extracellular roles of DJ-1 to promote angiogenesis and osteogenesis, suggesting
DJ-1 may have therapeutic potential to stimulate bone regeneration.
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essential process for wound healing and is subject to

multiple layers of regulation during the migration and
proliferation of endothelial cells and their subsequent differentia-
tion into mature blood vessels!. These processes are mediated by
components of the extracellular matrix (ECM), cytokines and
growth factors, such as vascular endothelial growth factor
(VEGF) and fibroblast growth factors (FGFs). Among them,
FGE-2 is known to stimulate angiogenesis in vivo®> and promote
endothelial cell proliferation, chemotaxis and tube formation
in vitro"3. In endothelial cells, FGF-2 exerts its biological
effects mainly by activating fibroblast growth factor receptor-1
(FGFR-1)*"7, which is a member of the tyrosine kinase receptor
family3-1%. FGF-2 also induces VEGF expression in endothelial
cells through autocrine and paracrine mechanisms'!.

Bone fracture healing is a complex process mediated by
multiple factors and is known to proceed through definable
temporal and spatial sequences. In particular, cell-to-cell com-
munication between diverse cell-types, such as endothelial cells,
osteoblasts, osteoclasts and fibroblasts, is vital to the healing
process'?>~14, Impaired bone healing is associated with a reduction
in vascular supply and limited nutrient availability at the site of
injury, suggesting that an impaired angiogenic response is a major
cause for this pathology'®>~!7. Accordingly, angiogenic factors,
such as VEGF and FGFs, which are upregulated during the
healing process, are thought to have important roles in repairing
bone fracture!®1°,

Several reports have demonstrated an intricate interplay
between bone-forming osteoblasts and vessel-forming endothelial
cells, consistent with their physical proximity during bone
formation'®20, In particular, osteoblasts secrete angiogenic
(such as VEGF) and osteogenic (such as insulin-like growth
factor-I) factors, which mediate the cross-talk between osteoblasts
and endothelial cells?!. Given that cell-to-cell communication has
a critical part during the healing process, we have searched for
additional angiogenic factors that are specifically secreted from
osteoblasts. By applying a systematic proteomic approach, here
we identify DJ-1 as a novel angiogenic factor secreted from
human mesenchymal stem cells (hMSCs) during osteogenesis.
Human DJ-1, which is a 189-amino acid protein encoded b27
PARK?7, is ubiquitously expressed in various human tissues®*.
Mutations in the DJ-1 gene are known to cause familial
Parkinson’s Disease?> and DJ-1 has been suggested to have
chaperone-like?* and pro-survival activities*>2°. In addition to its
intracellular functions, several studies have reported that DJ-1 is
secreted into the extracellular regions®”>?, but the extracellular
role of DJ-1 has remained enigmatic.

In this study, we have found that DJ-1 mediates the cross-talk
between osteoblasts and endothelial cells. We provide evidence
that DJ-1 promotes osteogenesis and induces angiogenesis
through the activation of FGFR-1 signalling both in vitro and
in vivo. Moreover, we show that in a rodent model of bone
fracture repair, application of DJ-1 directly to the injured site
markedly enhances bone regeneration by stimulating the
formation of blood vessels and new bones. Consistent with the
role of DJ-1 in osteogenesis, mineralization of osteoblasts and
bone regeneration processes are impaired in DJ-1-knockout mice.
Taken together, these results reveal previously undefined
extracellular functions for DJ-1 as an angiogenic and an
osteogenic factor, suggesting a therapeutic potential of DJ-1 in
bone fracture healing and bone regeneration.

Q ngiogenesis, the formation of new vascular networks, is an

Results
Osteoblast conditioned medium enhances endothelial cell
migration. To identify previously unidentified secretory

molecules that promote angiogenesis during osteogenesis, we
collected conditioned medium (CM) from undifferentiated
hMSCs or differentiated osteoblasts (Fig. 1a). CM was collected at
10th day after the induction of osteogenesis because at this
time we were able to detect substantial mineralization of ECM,
characteristic of mature osteoblasts. Differentiation of hMSCs
into osteoblasts was confirmed by alizarin red S staining to
detect mineral accumulation in the ECM (Supplementary
Fig. Slab). Quantitative reverse transcription-PCR was also
performed to measure the levels of osteogenic markers, such
as alkaline phosphatase (ALP), runt-related transcription factor 2
(Runx2), bone sialoprotein (BSP) and osteocalcin (OCN)
(Supplementary Fig. Slc). By employing a modified Boyden
chamber assay?®, we then examined if the CM from
undifferentiated hMSCs or osteoblasts had any effects on the
migration of immortalized human umbilical vein endothelium
cells iIHUVECS), a property which is related to angiogenesis. As
compared with the CM collected from undifferentiated hMSCs,
osteoblast CM significantly enhanced the migration of iHUVECs
in a concentration-dependent manner (Fig. 1b). On the other
hand, osteoblast CM lacking VEGF was sufficient to induce the
migration of iHUVECs and osteoblast differentiation
(Supplementary Fig. S2).

To isolate proteins and/or peptides that induced iHUVEC
migration, we then performed reverse-phase high-performance
liquid chromatography for CMs from undifferentiated hMSCs
and differentiated osteoblasts. A total of 96 fractions from each
CM were collected and screened for iHUVECs migration-
inducing activity. Initially, 96 fractions from each CM were
pooled into eight groups, for example, group A contained
fractions from Al to A12. Among the eight groups, groups E and
F from osteoblast CM increased iHUVEC migration as compared
with the CM from undifferentiated hMSCs (Fig. 1c).

DJ-1 is secreted during hMSC osteogenesis. To identify the
molecule responsible for inducing cell migration, we performed
electrospray ionization liquid chromatography-mass spectro-
metry analysis for fractions E and F (mentioned above) obtained
from undifferentiated hMSC CM and differentiated osteoblast
CM. Through the mass analysis of groups E and F, we were able
to identify about 180 proteins and peptides. The fractions con-
tained osteonectin, a well-known secretorg molecule that has an
essential role in bone mineralization®® and angiogenesis’!,
together with several additional proteins that have angiogenic
activities, such as macrophage migration inhibitory factor*? (data
not shown).

Interestingly, the level of DJ-1, a protein whose extracellular
function is unknown to date, was markedly upregulated in the
CM from differentiated osteoblasts (4.15-fold increase when
quantified by mass analysis) as compared with that from
undifferentiated hMSCs. When the amount of DJ-1 secretion
was quantified by enzyme-linked immunosorbent assay, we found
that DJ-1 secretion was increased in response to the induction of
osteogenesis with a peak level detected at 6th day (Fig. 1d). As
this peak in DJ-1 secretion correlated well with the time when
mineralization ~was initiated, we investigated whether
mineralization of osteoblasts is associated with DJ-1 secretion.
Indeed, DJ-1 secretion was remarkably suppressed when
mineralization of osteoblasts was prevented by depleting
B-glycerophosphate from the osteogenesis induction medium
(Fig. 1e,f). On the other hand, the gene expression level of DJ-1
did not show a similar aspect with the secretion level of DJ-1
during osteogenesis (Supplementary Fig. S3). Taken together,
these results suggest that DJ-1 secretion is upregulated during
osteogenesis and mineralization of osteoblasts might regulate the
translocation of DJ-1 to the extracellular region.
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Figure 1| Experimental strategy and DJ-1secretion during osteogenesis of hMSCs. (a) Experimental strategy for identifying novel angiogenic factors
secreted during osteogenesis. After hMSCs were seeded for CM collection, one group was cultured in growth medium (GM) and the other group was
cultured in osteogenesis induction medium (OIM). After 10 days, the CM from undifferentiated hMSCs and differentiated osteoblasts were harvested and
examined for effects on iIHUVEC migration. (b) After concentrating the hMSC and osteoblast CM, CM were applied at varying concentrations as indicated
and effects on iIHUVEC migration were analysed. After incubation for 6 h, migrating cells were quantified. Migrating cells were expressed as the fold-change
in comparison to the vehicle, which contained only the medium. *P<0.05 versus hMSC CM. (¢) hMSC and osteoblast CM were separated by reverse-
phase high-performance liquid chromatography and fractions were tested for iIHUVEC migration-inducing activity. After incubation for 6 h, migrating cells
were analysed. Migrating cells were expressed as the fold-change in comparison to the vehicle control. **P<0.01 versus the hMSC CM fractions. (d) The
concentration of DJ-1 in the medium (collected from O to 12 days after osteogenesis induction) was quantified by enzyme-linked immunosorbent assay.
*P<0.05 and **P<0.01 versus day O. (e) Depletion of B-glycerophosphate from the OIM drastically prevented mineral accumulation of osteoblasts.
Alizarin red S staining was performed at 12 days after the induction of osteogenesis. (f) DJ-1 secretion was quantified after treatment with OIM that
contains or lacks B-glycerophosphate. **P<0.01 versus OIM treatment. n=3 for all groups. All data are expressed as means + s.e.m.

DJ-1 stimulates angiogenesis in vitro and in vivo. To investigate
the possible role of DJ-1 in endothelial cells, we first examined the
activity of recombinant DJ-1 in a migration assay using iHU-
VECs. Recombinant DJ-1 was purified as previously described?*
and verified (Supplementary Fig. S4). We found that DJ-1-
induced iHUVEC migration in a dose-dependent manner
(Fig. 2a). At the dose which DJ-1 exhibited its maximal effect
(10nM), DJ-1 increased iHUVEC migration about 1.5-fold over
the wvehicle control, the extent which was comparable to
well-known angiogenic factors, such as VEGF (20 ngml ~!) and
FGF-2 (20ngml — ).

DJ-1 also induced the formation of capillary tubes
in iHUVECs, another property related to angiogenesis'>>.
In two-dimensional matrigels, DJ-1 induced the formation of
well-organized, capillary-like networks comparable to those
induced by FGF-2 (Fig. 2b,c). When the tube area covered by
the capillary-like networks was quantified by measuring the
lengths of the cells connected to each other in the network, DJ-1
enhanced the area of tube formation about threefold greater than
the vehicle control. Similar activities of DJ-1 for promoting
migration and tube formation were observed in HUVECs and
human microvascular endothelial cells-1 (Supplementary Figs S5
and S6). These results clearly suggest angiogenic properties of
DJ-1 in vitro.

Next, we performed a matrigel plug assay to investigate if
DJ-1 has an angiogenic activity in vivo. Matrigel plugs containing
DJ-1 (0.1 or 1pg), FGF-2 (0.1pg) or vehicle control were

subcutaneously injected into the abdomen of C57BL/six mice. At
7th day after the injection, the matrigel plugs were harvested and
examined for blood vessel formation by H&E staining and
immunostaining (Fig. 2d,e). Both DJ-1 (1ng) and FGE-2
significantly stimulated blood vessel formation as compared
with vehicle treatment. Blood vessels containing red blood cells
were observed in both the DJ-1 (1pg) and the FGF-2-treated
groups (Fig. 2d). Blood vessel formation stimulated by DJ-1
treatment was confirmed by immunostaining for CD31, an
endothelial marker (Fig. 2e). Taken together, these data identify
DJ-1 as a novel angiogenic factor that functions both in vivo and
in vitro.

DJ-1 promotes angiogenesis by activating FGFR-1. To investi-
gate the mechanisms by which DJ-1 displays angiogenic activity
in endothelial cells, we asked if DJ-1 could signal through acti-
vating receptors for FGF or VEGF. FGFR-1 and VEGF receptor-2
(VEGFR-2) are key receptors that induce angiogenesis in endo-
thelial cells!. FGF-2 (20 ngml ™ Iy and VEGF (20 ngml ™ )
induced the phosphorylation of FGFR-1 and VEGFR-2,
respectively, and activated downstream signalling molecules,
such as Src kinase, focal adhesion kinase (FAK) and
extracellular signal-regulated kinase 1/2 (ERK1/2)3*, which have
been implicated in endothelial cell differentiation (Fig. 3a).
Importantly, we found that DJ-1 (10nM) also induced the
phosphorylation of FGFR-1 within minutes and activated

NATURE COMMUNICATIONS | 3:1296 | DOI: 10.1038/ncomms2313 | www.nature.com/naturecommunications 3

© 2012 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2313

a
© 25+
Q
<
g) 24 *k *k *k
‘.6 b *%
ke
.._9 1.5 1 *
£
3 17
(8]
[2)
£ 05
o
(=]
S o-

Vehicle 1 10 100 1000 FGF-2 VEGF
DJ-1 (M)
€ 6.000- "
b 5,000 -

Vehicle

Tube area mm—2
w
o
o
o

Vehicle

Figure 2 | DJ-1 functions as an angiogenic factor in vitro and in vivo. (a) DJ-1induces iHUVEC migration in a dose-dependent manner. Migration-inducing
activity of DJ-1 was compared with that of FGF-2 (20 ngml~") or VEGF (20 ngml~"). After incubation for 6 h, migrated cells were fixed, stained and
counted in five random fields. Migrating cells were expressed as the fold-change in comparison to the vehicle control. *P<0.05 and **P<0.01 versus the
vehicle. (b) iIHUVECs were incubated with matrigel in the presence of DJ-1 (10 nM) or FGF-2 (20 ngml ~"). FGF-2 was used as a positive control.
Photographs (X50) were taken at 9 h after the treatment. The scale bar represents 400 pm. (¢) Quantification of DJ-1-induced capillary tube formation. The
tube area was quantified by using Scion image software to measure the tube length of iIHUVECs connected to each other in the capillary-like structure. Tube
area is presented as the average value from three random fields. **P<0.01 versus the vehicle. (d,e) DJ-1 stimulates angiogenesis in vivo. Matrigel plugs
containing vehicle, DJ-1 (0.1 or 1pg) or FGF-2 (0.1pug) were subcutaneously injected into mice. After 7 days, the matrigel plugs were extracted, fixed,
embedded in paraffin, sectioned at 4 pm and immunostained. (d) Sections of each matrigel plug were stained by H&E and photographed (X200). The
arrow shows blood vessels containing red blood cells. The scale bar represents 10 um. (e) The matrigel plugs were stained with antibody against PECAM

(CD31). The scale bar represents 60 um. n=3 for all groups. All data are expressed as means + s.e.m.

downstream signalling molecules, such as Src, FAK and ERK1/2.

To determine the possible cross-talk between FGFR-1
signalling and DJ-1-induced angiogenesis, we examined the
effects of SU5402, an FGFR-1 antagonist on DJ-1-stimulated
iHUVEC migration and capillary tube formation (Fig. 3b-d). To
our surprise, we found that pretreatment with SU5402 completely
blocked the migration of iHUVECs induced by DJ-1. As expected,
SU5402 also inhibited FGF-2-induced iHUVEC migration, but
not VEGF-induced iHUVEC migration (Fig. 3b). The formation
of capillary networks induced by DJ-1 was also nearly completely
prevented by SU5402 (Fig. 3c,d). In the presence of SU5402, DJ-1
was unable to induce organized structures, and quantification of
the tube area confirmed that DJ-1 failed to organize capillary

networks when FGFR-1 signalling was disrupted (Fig. 3d).
Consistent with the lack of effects on migration and network
formation, DJ-1 failed to induce the phosphorylations of FGFR-1,
Src, FAK and ERK1/2 in the presence of SU5402 (Fig. 3e).

To further confirm the involvement of FGFR-1 signalling in
DJ-1-induced angiogenic activity, we depleted FGFR-1 or
VEGEFR-2 with a specific small-interfering RNA (siRNA). The
efficacy of the FGFR-1 siRNA and VEGFR-2 siRNA was
confirmed by immunoblotting (Fig. 3f). In a modified Boyden
chamber assay, FGFR-1 siRNA completely abrogated iHUVEC
migration induced by FGF-2 (Fig. 3g). Importantly, we observed
that DJ-1 was no longer capable of inducing iHUVEC migration
when FGFR-1 was depleted, whereas VEGFR-2 siRNA did not
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Figure 3 | DJ-1 induces angiogenesis through FGFR-1 activation. (a) DJ-1 induces FGFR-1 phosphorylation in iHUVECs. Cells were treated with DJ-1

(10nM), FGF-2 (20 ng ml—1) or VEGF (20 ng ml~1) and phosphorylations of FGFR-1, VEGFR-2, Src, FAK and ERK1/2 were examined. (b) iHUVECs were
pretreated with SU5402 (1uM) for 30 min, and the cells were incubated with DJ-1 (10 nM), FGF-2 (20 ngml—") or VEGF (20 ngml~") for 6 h to analyse
cell migration. NS, not significant and *P<0.05 versus DJ-1 or FGF-2 alone. (¢, d) SU5402 (1puM) abolishes iHUVECs tube formation stimulated by DJ-1.
Photographs (X50) were taken at 9 h after treatment with DJ-1 (10 nM), FGF-2 (20 ngml~") or vehicle control. The scale bar represents 400 pm. Tube
area was also quantified as in d. **P<0.01 versus the vehicle or DJ-1 alone. (e) Shown are representative immunoblots of iIHUVECs that were treated with
DJ-1 (10 nM) for 5min in the presence or absence of SU5402 (1puM). DJ-1-stimulated phosphorylations of FGFR-1, Src, FAK and ERK1/2 were blocked by
SU5402 treatment. (f) Knockdown of FGFR-1 or VEGFR-2 by siRNA was confirmed by immunoblot analysis. Cells were harvested at 72 h after transfection
with siRNAs (100 nM) for non-targeting, FGFR-1-targeting or VEGFR-2-targeting. (g) The effects of FGFR-1 knockdown on DJ-1-induced iHUVEC migration.
iHUVECs were transfected with siRNAs for non-targeting, FGFR-1 or VEGFR-2. At 72 h after transfection, cells were trypsinized and migration activity was
investigated. DJ-1 (10 nM), FGF-2 (20ngml~—") or VEGF (20 ngml~") was treated for 6 h in the cell migration assay. NS, not significant and **P<0.01

versus non-targeting siRNA treatment. n=3 for all groups. All data are expressed as means *s.e.m.

show significant effect on iHUVEC migration stimulated by DJ-1.
Collectively, these results indicate that FGFR-1 signalling is
required for DJ-1 to induce angiogenic activity in vitro.

As we observed activation of FGFR-1 signalling by DJ-1
(Fig. 3a), we performed a receptor binding assay by using
DJ-1 and iodine-labeled FGF-2 in order to determine whether
DJ-1 competes with FGF-2 for the same binding site on FGFR-1
(Supplementary Fig. S7). DJ-1, however, did not compete with
FGF-2 for FGFR-1 binding, whereas iodine-labeled FGEF-2
competed with unlabelled FGF-2 in a dose-dependent manner.
We then examined if DJ-1 has a direct interaction with FGFR-1.
To determine the interaction between DJ-1 and FGFR-1, we
performed immunoprecipitation of FGFR-1 in the presence or
absence of DJ-1. We observed that DJ-1 interacted with FGFR-1
and induced the phosphorylation of FGFR-1 (Supplementary Fig.
S8). These results suggest that DJ-1 might activate FGFR-1 by
directly interacting with a site that is different from the FGF-2-
binding site.

DJ-1 stimulates differentiation of hMSCs into osteoblasts.
Next, we investigated the possible role of DJ-1 in osteogenesis of
hMSCs. We found that direct application of exogenous DJ-1

promoted the differentiation and mineralization of osteoblasts in
a dose-dependent manner (Fig. 4a). Extracellularly applied DJ-1
was sufficient to induce the expression of osteogenic markers,
such as ALP, BSP and OCN (Fig. 4b). In addition, we found that
application of exogenous DJ-1 was capable of inducing VEGF
secretion (Supplementary Fig. S9a).

We then examined whether DJ-1 stimulated osteogenesis by
activating FGFR-1 signalling. As in iHUVECs, DJ-1 induced the
activation of FGFR-1 signalling in hMSCs (Fig. 4c), an effect
which was completely prevented by SU5402 (1pM) (Fig. 4d).
Moreover, SU5402 was able to inhibit the mineralization of
osteoblasts (Fig. 4e,f). Furthermore, the ability of DJ-1 to induce
the expression of osteogenic markers, such as BSP, OCN and
bone morphogenic protein 2 (BMP2), was also significantly
prevented by SU5402 (Supplementary Fig. S10). In addition, the
enhanced expression and secretion of VEGF stimulated by DJ-1
were significantly suppressed in the presence of SU5402
(Supplementary Fig. S9b,c). To further confirm the role of DJ-1 in
inducing osteogenesis of hMSCs, we applied a specific small
hairpin RNA (shRNA) against DJ-1 (Fig. 4g) and found that DJ-1
shRNA was able to substantially prevent mineralization of
osteoblasts in osteogenic differentiation condition (Fig. 4h). On
the other hand, treatment of exogenous DJ-1 completely rescued
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Figure 4 | DJ-1 stimulates osteoblast differentiation and mineralization of hMSCs. (a) hMSCs were treated with DJ-1 (0.1-100 nM) in osteogenic

differentiation condition for 9 days. Osteogenic differentiation was confirme
osteogenesis was confirmed by quantitative reverse transcription-PCR. *P<

d by alizarin red S staining. (b) Osteogenic marker expression during
0.05 and **P<0.01 versus the vehicle. (¢) DJ-1 (10 nM) induced

phosphorylations of FGFR-1 and ERK1/2 in hMSCs. (d) SU5402 (1pM) treatment abolished the phosphorylation of FGFR-1 induced by DJ-1. (e) Effect of
SU5402 on DJ-1-stimulated osteogenesis was confirmed by alizarin red S staining at 7 days after osteogenesis induction. (f) Quantification of the amount
of alizarin red S staining. **P<0.01 versus the vehicle or DJ-1 alone. (g) hMSCs were transfected with non-targeting or two different DJ-1 shRNAs and

subjected to immunoblot analysis. (h) Knockdown of DJ-1 by shRNA suppres

sed osteoblast mineralization, an effect which was confirmed by alizarin red S

staining at 12 days after osteogenesis induction. GM indicates growth medium and osteogenesis induction medium (OIM) indicates osteogenesis induction
medium. (i) Exogenous DJ-1 rescues osteoblast differentiation in DJ-1 knockdown cells and it was examined by alizarin red S staining at 9 days after
osteogenesis induction. (j) Quantification of the amount of alizarin red S staining. **P<0.01 versus the vehicle of non-targeting shRNA treatment. n=3 for

all groups. All data are presented as means +s.e.m.

impaired osteogenic differentiation caused by DJ-1 depletion
(Fig. 4i,j). In addition, we found that osteogenic activity of FGF-2
was not affected by DJ-1 depletion (Supplementary Fig. S11).
Taken together, these results provide convincing evidence that
application of extracellular DJ-1 is sufficient to stimulate osteo-
genesis of hMSCs and that endogenous DJ-1 might be required
for mineralization of osteoblasts, but extracellular DJ-1 mainly
functions as a strong stimulator of osteogenesis.

DJ-1 promotes bone regeneration in a cranial defect model.
We then examined the possible roles of DJ-1 in the bone healing
process by using a rodent model of cranial critical-size
defect®>38, Collagen membranes were used as scaffolds and
carriers for DJ-1 or FGF-2. Collagen membranes soaked with
DJ-1 (1 pug), FGF-2 (0.1 pg) or vehicle control were implanted into

6

the defective areas in the cranial, and then their effects on bone
repair were examined by three-dimensional microcomputed
tomography (LCT) at 4 weeks after the implantation (Fig. 5a,b).
We found that DJ-1 treatment significantly promoted bone repair
and that the extent of promotion was comparable to that induced
by FGF-2 treatment. New bone formation in the defective site
(circled area in Fig. 5a) was quantified and expressed as a
percentage of bone coverage of the total defect area. Histological
evaluation of bone repair was also performed by H&E staining
(Fig. 5¢,d) and immunohistochemistry for antibody against
o-SMA (alpha-smooth muscle actin), a marker for vascular
muscle (Fig. 5e,f). Again, DJ-1 promoted mature bone formation
in the regenerated bone tissue and surrounding soft tissues
(Fig. 5¢,d). Blood vessels were easily identified in the tissue samples
by the positive immunoreactivity with the o-SMA antibody
(Fig. 5e). The number of blood vessels in the DJ-1-treated group
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Figure 5 | DJ-1 promotes bone regeneration in a rat cranial critical-size defect model. (a) Representative pCT images of cranial defects at 4 weeks after
surgery. Cranial defect was induced and the defective site was covered with collagen membranes soaked with DJ-1 (1pg), FGF-2 (0.1pg) or vehicle control.
The scale bar represents 2 mm. (b) Quantification of uCT images of cranial defects at 4 weeks after surgery. Total new bone formation at the defective site
is expressed as a percentage of bone coverage relative to the total defective site. *P<0.05 versus the vehicle. (¢) At 4 weeks after surgery, defective site
sections were stained with H&E and photographed (X40, X100). The scale bar represents 500 um. (d) Quantification of H&E stained images. Increased
bone formation at the defective site in response to application of DJ-1is shown. Bone volume in the defective site is represented as a percentage of
mineralized bone tissue relative to total tissue volume. *P<0.05 and **P<0.01 versus the vehicle. (e) To detect blood vessel formation, defective site
sections were immunostained with antibody against a-SMA and photographed (X100). The scale bar represents 200 um. (f) Quantification of blood vessel
in a-SMA-stained images. *P<0.05 and **P<0.01 versus the vehicle. n= 8 for all groups (group 1. Vehicle, DJ-1; group 2: DJ-1, FGF-2). All data are

presented as means *s.em.

was higher than the vehicle-treated group (Fig. 5f). Enhanced
bone repair in response to DJ-1 treatment was also noted when
observed at 2 weeks (Supplementary Fig. S12).

To investigate whether FGFR-1 activation is crucial for DJ-1-
stimulated bone regeneration in vivo as observed in vitro (Figs 3
and 4), we examined the effects of SU5402 (15 pg) and found that
SU5402 treatment completely prevented bone regeneration
induced by DJ-1 (Supplementary Fig. S13ab). Similarly,
inductive blood vessel formation induced by DJ-1 was also
blocked by SU5402 treatment (Supplementary Fig. S13c). These
results show that FGFR-1 activation is required for the in vivo
functions of DJ-1 to promote bone regeneration and blood vessel
formation.

DJ-1-deficient mice show impaired bone regeneration. To fur-
ther investigate the in vivo role of DJ-1 in bone regeneration, we
performed surgery to induce cranial defects (4 mm in diameter)
in DJ-1~/~ mice and wild-type (6-weeks-old). After 3 weeks, the
general aspects of bone regeneration were observed by trichrome
stained sections (Fig. 6a,b). In both wild-type and DJ-1~ '~ mice,

new bone formation from bone margins was observed, and the
healing was proceeded mainly through a thin fibrous connective
tissue. Notably, DJ-1 ~/= mice (7.73 £ 1.49%) showed defects in
new bone formation as compared with wild-type (12.87 + 3.05%).
In both DJ-1~/~ mice and wild-type, the newly formed bone,
however, was not detected in nCT image because of insufficient
maturation of bone matrix. Most of the newly formed bone tis-
sues observed at the marginal areas revealed immature woven
bones surrounded by thin lamellar plates. Moreover, in DJ-1~/~
mice (0.61 £0.15%), the mineral apposition rate (MAR) at tibial
cortical plate was also reduced compared with wild-type
(1.19 £ 0.14%), suggestive of impaired bone formation (Fig. 6¢,d).
Similarly, impaired blood vessel formation in the cranial defective
site was observed in DJ-1 '/~ mice as compared with wild-type
(Supplementary Fig. S14). Taken together, these results show that
DJ-1 is an important regulator of bone regeneration in vivo.

Discussion
Through an unbiased search for molecules that have angiogenic
activity, here we identify DJ-1 as a novel factor that promotes
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Figure 6 | DJ-1-deficient mice show reduced bone regeneration in a cranial critical-size defect model. (a) Surgery was performed to induce cranial
defects in wild-type (WT) and DJ-1~/~ mice (DJ-1 KO). After 3 weeks, bone defective site sections were examined by trichrome staining and
photographed (X40, X100). The scale bar represents 300 um. (b) Efficiency of bone regeneration was evaluated by measuring of the linear ingrowth of
new bones from defective margins and expressed as a percentage to the total defective size. *P<0.05 versus WT. (¢) Double fluorescent labels were
shown at tibial cortical plate and photographed (X200). The scale bar represents 300 um. (d) Distance between the two fluorescent labels was measured
to represent the MAR (um per day) of new bone formation. *P<0.05 versus MAR of WT. n=3 for all groups. All data are expressed as means * s.e.m.
(e) Proposed mechanism for a role of DJ-1 in bone regeneration. First, DJ-1 is secreted during MSC osteogenesis. Second, secreted DJ-1 induces the
migration and differentiation of endothelial cells to form functional blood vessels via activation of FGFR-1 signalling. Third, DJ-1 stimulates the osteogenesis
of MSCs via FGFR-1 activation and, fourth, DJ-1 also enhances VEGF secretion during osteogenesis. Fifth, upregulation of both DJ-1 and VEGF during
osteogenesis can accelerate angiogenesis at the fracture site and enhance bone regeneration.

angiogenesis and stimulates osteogenesis (Fig. 6e). We have found
that DJ-1 secretion is significantly enhanced during hMSC
osteogenesis and that DJ-1 stimulates blood vessel formation in
endothelial cells through the activation of FGFR-1 signalling.
Moreover, direct application of DJ-1 in the medium was sufficient
to stimulate the differentiation of hMSCs into osteoblasts by
inducing FGFR-1 activation and VEGF secretion from osteo-
blasts. These activities of DJ-1 led to enhanced bone regeneration
in vivo by stimulating angiogenesis and bone formation during
bone fracture healing process. Together, our findings suggest DJ-1
as a novel angiogenic factor and an activator of osteogenesis that
mediates the communication between osteoblasts and endothelial
cells during bone regeneration.

Bone regeneration is a complicated process that requires
interactions among diverse cell-types. During bone regeneration,
skeletal vascularization of the fracture site is crucial and the

interaction between bone-forming osteoblasts and endothelial
cells is of particular importance. This cross-talk is likely mediated
by secretory molecules that function in an autocrine and/or
paracrine fashion, but the identities of the molecules that mediate
the interaction have not been fully defined. Here we identify DJ-1
as a novel mediator of cross-talk between osteoblasts and
endothelial cells through the proteomic analysis of osteoblast
CM. As we found that osteoblast CM included a variety of
proteins with osteogenic or angiogenic activity, as previously
described, it is also possible that DJ-1 might participate in bone
regeneration together with or by regulating these secretory
molecules of osteoblasts.

VEGF and FGF-2 are well-known to stimulate osteoblast
differentiation®>4°. VEGF promotes osteogenic differentiation
in vitro and local application of VEGF in vivo enhances bone
healing, whereas inhibition of VEGF activity impairs fracture
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healing*"*2. Similarly, FGF-2 has been previously identified as a
major player in angiogenesis and skeletal development*3. FGF-2
treatment stimulates bone formation in vitro and depletion of
FGF-2 gene suppresses osteogenic differentiation of MSCs*%. In
addition, expression of FGFs and their receptors are known to be
elevated during fracture healing!® and local application of
recombinant human FGF-2 accelerates healing of tibial shaft
fractures in human*’.

Here we show that application of exogenous DJ-1 is sufficient
to induce both angiogenesis and osteogenesis in vitro and that
VEGF secretion is markedly increased in response to DJ-1
treatment during osteogenesis (Supplementary Fig. S9a). More-
over, administration of DJ-1 enhances bone regeneration in vivo
by stimulating the formation of blood vessels and new bones in a
rodent model of cranial critical-size defect (Fig. 5). Given that
VEGEF secretion from osteoblasts is upregulated by application of
DJ-1 (Supplementary Fig. S9a), it is possible that DJ-1 enhances
angiogenesis and bone formation by activating both FGFR-1 and
VEGFR-2 signalling.

Our results show that depletion of DJ-1 in hMSCs suppressed
their differentiation into osteoblasts and mineralization
as well (Fig. 4h). Together with the fact that DJ-1 secretion was
inhibited during osteogenesis when mineralization was blocked
(Fig. 1e,f), these results suggest that DJ-1 might act in an
autocrine/paracrine fashion during osteoblast mineralization.
Moreover, as the expression level of DJ-1 did not represent the
enhanced secretion of DJ-1 during osteogenesis (Supplementary
Fig. S3), it is supposed that mineralization of osteoblasts induces
the translocation of DJ-1 to the extracellular region and that
secretory DJ-1 might stimulate further differentiation into mature
osteoblasts.

In experimental condition, bone regeneration was impaired in
DJ-1-knockout mice (Fig. 6). Given that DJ-I-deficient mice do
not display obvious defects in the formation of bones or vessels
during development, DJ-1 might not be a major factor for
regulating such processes under normal conditions. It is, however,
possible that DJ-1 is activated and regulates angiogenesis and
osteogenesis under particular physiological conditions, such as
bone fracture, a process which requires extensive bone
regeneration. Further study will be needed to elucidate the
conditions that induce the secretion and activation of DJ-1.
Moreover, verification of phenotype in DJ-1-knockout mice by
using alternative bone fracture model, such as a long bone
fracture assay*®, would further support the in vivo function of
DJ-1 in bone regeneration. As MAR was reduced in the tibia
of DJ-I-knockout mice (Fig. 6c,d), impaired and delayed bone
healing might be shown in DJ-1-knockout mice in response to
other bone fracture.

DJ-1 is thought to be a causative gene for PARK7-linked early-
onset Parkinson’s Disease?. Although the precise roles of DJ-1
remains to be defined, several studies have suggested that DJ-1
functions intracellularly as a molecular chaperon®!, as a
transcriptional regulator’” and as a pro-survival factor?>2°,
Interestingly, there have been studies reporting the presence of
DJ-1 in serum?”?8 and some suggestions have been made
regarding the mechanisms that might mediate the secretion of
DJ-1 into the medium®®. The extracellular function, however, of
the secreted DJ-1 has remained ambiguous. This study assigns
novel extracellular functions to DJ-1 and demonstrates its role as
an activator of angiogenesis and osteogenesis. We also suggest
that these functions are mediated by activating FGFR-1 signalling
on the basis of our observation that DJ-1 induced the
phosphorylation of FGFR-1, as well as downstream signalling
molecules in endothelial cells and hMSCs and that knockdown or
inhibition of FGFR-1 signalling suppressed DJ-1-stimulated
angiogenic and osteogenic activities. As DJ-1 did not compete

with FGF-2 for binding to FGFR-1, but DJ-1 had a direct
interaction with FGFR-1 (Supplementary Figs S7 and S8), it is
supposed that DJ-1 functions as a ligand for FGFR-1 by binding
to a site distinct from the FGF-2-interaction site. It is, however,
also plausible that DJ-1 activates FGFR-1 through an interaction
with co-receptor or modulator of FGFR-1, which forms complex
with FGFR-1 and might regulate the activation of FGFR-1%4,
Notably, application of extracellular DJ-1 caused a marked
elevation in the mRNA levels of BSP and OCN, an effect which
was substantially, but only partially blocked by SU5402
(Supplementary ~ Fig. S10). By contrast, DJ-1-induced
upregulation of BMP2 mRNA (Supplementary Fig. $10), as well
as the formation of capillary network (Fig. 3c,d) and cell
migration (Fig. 3b) were completely blocked by antagonizing
FGFR-1 signalling. These results suggest that some signals
induced by DJ-1 are mediated by FGFR-1 signalling, but other
signals might require additional signalling. In addition, our
results suggest the possibilities that DJ-1 and FGFR-1 act together
in same type of cells or interact with each other in two different
types of cells. Our data show that DJ-1 secretion is upregulated
during osteogenesis and that secretory DJ-1 might function as an
activator of osteogenesis and angiogenesis through FGFR-1
signalling. Accordingly, DJ-1 and FGFR-1 might act together in
MSCs and/or osteoblasts when DJ-1 function as an osteogenic
activator. On the other hand, when DJ-1 functions as an
angiogenic factor, secretory DJ-1 from osteoblasts might
interact with FGFR-1 in endothelial cells. Although the detailed
molecular mechanisms by which DJ-1 activates FGFR-1
signalling or possibly other signalling need further investigation,
our study clearly reveals previously undefined extracellular roles
of DJ-1.

In conclusion, our study adds DJ-1 to the limited list of
exogenous factors that induce osteogenesis and angiogenesis,
both of which properties are essential for bone regeneration. Our
work suggests that DJ-1 in vivo might have a therapeutic potential
for promoting vascular supply and bone fracture healing.
Furthermore, given that there is limited therapy for the bone
fracture healing, combination treatment of DJ-1 with angiogenic
factors, such as VEGF and FGF-2 or osteogenic factors, such as
BMP2 and BMP4*%°°, may provide a new therapeutic strategy to
improve bone regeneration.

Methods

Cells and culture conditions. hMSCs were purchased from Cambrex (Lonza,
Walkersville, MD) and maintained in DMEM (Lonza) supplemented with 10% FBS
(Gibco BRL, Grand Island, N'Y), 100 units ml ~ ! penicillin and 0.1 mgml ~!
streptomycin (Gibco BRL). Human papilloma virus immortalized HUVECs
(iHUVECs, kindly provided by Dr Ashley Moses, Oregon Health & Sciences
University) were maintained in M199 supplemented with 10% FBS (Lonza), 5 mM
L-glutamine (Gibco BRL), endothelial cell growth supplement (ECGS, BD Bios-
ciences, Bedford, MA), 100 units ml ~ ! penicillin and 0.1 mgml ~ ! streptomycin.
The cells were grown at 37 °C under a humidified atmosphere with 5% CO,. Cells
for all experiments were used at passages 6-10.

Osteogenic differentiation of hMSCs and alizarin red S staining. hMSCs were
plated 3 x 10° per in 6-well plates or 1 x 10% per in 96-well plates. After 2 days,
hMSCs were cultured in DMEM supplemented with 10% FBS, 10 mM B-glycer-
ophosphate (USB Corp, Cleveland, OH), 50 uM ascorbate-2-phosphate (Sigma-
Aldrich, St Louis, MO), 100 nM dexamethasone (Sigma-Aldrich), 100 units ml !
penicillin and 0.1 mgml ~ ! streptomycin. Osteoblast differentiation of hMSCs was
confirmed by alizarin red S staining. For staining, differentiated cells were fixed in
4% paraformaldehyde for 20 min, washed two times with PBS, and then stained
with 1% alizarin red solution (Sigma-Aldrich) for 20 min. Cells were then washed
five times with distilled water and examined for the presence of calcium deposits.
Mineralization was quantified as previously described”!.

Detection of DJ-1 secretion. Concentration of DJ-1 in the medium was measured
by using a Human DJ-1 ELISA kit (CircuLex Co, Japan) according to the
manufacturer’s protocol.
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Cell migration assay. Cell migration was measured in a modified Boyden
chemotaxis chamber (NeuroProbe Inc, Gaithersburg, MD). Polycarbonated
membranes with 8 pum pores were coated with 20 pg human placenta collagen
(Sigma-Aldrich) and dried. M199 medium containing vehicle or test compounds
was placed in the bottom wells of the chamber. Cells were trypsinized and washed,
and then resuspended in M199. The upper chamber was loaded with 1 x 10* cells.
The chemotaxis chambers were incubated at 37 °C for 6 h. After incubation, non-
migrating cells were removed from the top side of the filter, and migrated cells were
stained with Hoechst dye (Sigma-Aldrich). Five randomly chosen fields (X100) of
each sample were photographed and counted.

Endothelial cell capillary tube formation assay. iHUVECs (1 x 10° cells per
well) were plated into 48-well plates coated with growth factor-reduced matrigel
(BD Biosciences) and incubated for 9h at 37 °C in serum-free M199 in the pre-
sence of test compounds as indicated. Three random areas for each sample were
photographed. Using the Scion Image Programme, total tube areas were measured
in mm?. All images were visualized by using a Zeiss Axiovert 135 microscope
equipped with an Olympus DP71 camera.

Matrigel plug assay and immunostaining. The matrigel plug assay was per-
formed as previously described®2. C57BL/six mice (male, 6 weeks, three mice per
group) were subcutaneously injected in the abdomen with 0.5 ml of growth factor-
reduced matrigel plugs containing test compounds supplemented with 10 units of
heparin to promote angiogenesis. The mice were euthanized at 7th day after
implantation, and then matrigel plugs were harvested. The plugs were fixed in 4%
paraformaldehyde and embedded in paraffin. Cross-sections of paraffin-embedded
matrigel were stained with hematoxylin and eosin (H&E) and images were
visualized using an Olympus BX51 microscope equipped with an UPlanFL XN100/
1.30 oil objective lens. For vessel immunostaining, anti-CD31 antibody (1:1,000,
Santa Cruz Biotechnology, Santa Cruz, CA) was used. All images were visualized
using an FV1000 Olympus confocal microscope equipped with an UPlanSApo
X40/0.75 objective lens and acquired by using FV1000-ASW 1.5 software. Animal
study protocols were approved by the Institutional Animal Care and Use
Committee at Pohang University of Science and Technology.

Knockdown of FGFR-1 and VEGFR-2. siRNA duplexes directed against FGFR-1
(5-AAGAAATTGCATGCAGTGCCG-3'>), VEGER-2 (5-GGAATTGACAA
GACAGCAA-3") and non-targeting siRNA duplexes (5'-TTCTCCGAACGTGTC
ACGT-3') were synthesized by GenePharma (Shanghai, China). iHUVECs were
transfected with siRNA (100 nM) for non-targeting, FGFR-1-targeting or VEGFR-
2-targeting using lipofectamine (Invitrogen) under serum-free conditions
according to the manufacturer’s instructions. At 4 h after transfection, the cells
were washed and supplemented with fresh medium containing 10% foetal bovine
serum. Cells were incubated for 72h before use.

Knockdown of DJ-1. Lentiviral shRNA expression plasmids for non-targeting and
human DJ-1 (PARK?) were purchased from Sigma-Aldrich (St Louis, MO).

Non-targeting shRNA plasmid (SHC002: 5'-CCGGCAACAAGATGAAGAGC
ACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT-3') and human
PARK7-targeting shRNA plasmids (#1: NM_007262.3-583s1c1, 5'-CCGGGCA
ATTGTTGAAGCCCTGAATCTCGAGATTCAGGGCTTCAACAATTGCT
TTTT-3', #2: NM_007262.3-506s1cl, 5'-CCGGACTCTGAGAATCGTGT
GGAAACTCGAGTTTCCACACGATTCTCAGAGTTTTTT-3).

For lentivirus transduction, 293T cells were transfected with 10 pg vector, 5 ug
G protein of the vesicular stomatitis virus (VSV-G) and 7.5 ug A 8.9 in 15 cm? dish.
Viral supernatant was harvested at 72h after transfection and hMSCs were
transfected with viral supernatant using lipofectamine (Invitrogen). Cells were
cultured in the puromycin-containing medium (2 pgml ~1) for 2 days to select
shRNA-transfected cells. After selection, cells were plated to be cultured.

Bone regeneration in a rat cranial defect model. In vivo bone regeneration
activity of DJ-1 was examined as previously described> with minor modifications.
Lewis rats (male, 12 weeks) were anesthetized. Using aseptic routines, a 15-mm
incision was made through the skin over the cranium and periosteum and then
full-thickness flaps were raised. Under sterile saline irrigation, a circular 9 mm
diameter defect was created by a trephine bur in the rat cranium (rat cranium
critical defect size: 8 mm). After the full-thickness of the cranial bone was removed,
collagen membranes (Zimmer Dental) with test compounds were immediately
placed in the defect. After 2-4 weeks, the defective sites were analysed with a three-
dimensional microcomputed (UCT) system (x-eye MCT series, SEC Co, Republic
of Korea). Tissue sections of the defective site were stained by H&E or a-SMA (Cell
Marque, Rocklin, CA) antibody. All images were visualized using an Olympus BH2
microscope equipped with an Olympus DP50 digital camera. Bone volume was
expressed as a percentage of mineralized bone tissue relative to the total tissue
volume and was measured by an iSolution DT analysis system (iMTechnolog,
Daejeon, Republic of Korea). Blood vessel analyses were also performed by
iSolution DT. Animal study protocols were approved by the Institutional Animal
Care and Use Committee at Kyungpook National University.

DJ-1-knockout mice. DJ-1-knockout mice on a C57BL/six background54 were
kindly provided by Tak W. Mak (University of Toronto, Toronto, ON, Canada).

Bone regeneration in DJ-1-knockout mice. Wild-type and DJ-1 ~/~ mice (male,
6 weeks, three mice of each group) were anesthetized. The skin over the cranium
was shaved and 0.5 cm midline sagittal incision was made to expose bone. Using a
4-mm external diameter dental trephine bur, one transosseous defect was created
in the parietal calvarium lateral to the sagittal suture under constant saline irri-
gation. And then the defective site was covered by layer suture of perisosteum and
skin with 5/0 absorbable monocryl suture (Ethicon, NJ). After surgery, the animals
were injected subcutaneously with gentamicin antibiotic for 3 days. In addition,
oxytetracycline (0.3 mlkg ~!) was injected intramuscularly twice in a 12-day-
interval for MAR evaluation. Animals were killed at 3 weeks after surgery. Block
sections, including the surgical sites, were removed and fixed in 10% neutral-
buffered formalin. Specimens were decalcified in 10% EDTA and embedded in
paraffin. Five micrometre thickness coronal sections were cut and stained with
trichrome. In addition, the tibia from each animal was prepared for resin
embedded grind sections of 30 um thickness. Histomorphometric data were eval-
uated using an analysis programme (iMT image analysis software). For MAR
analysis, the width of the newly mineralized bone layer at the cortex of tibia,
expressed in units of microns per day, was determined by measuring the distance
between two parallel fluorescent labels (tetracycline stained lines, detected at

390 nm). All images were obtained using Olympus BH2 microscope equipped with
an Olympus DP50 digital camera.

Statistical analysis. The data were analysed using Student’s ¢-test. P<0.05 and
P<0.01 were considered significant.

All of the experiments presented in the present study were repeated at least three
times.

Additional information about cell culture, preparation of CM, reverse-phase
high-performance liquid chromatography, tryptic digestion, electrospray ionization
liquid chromatography-mass spectrometry, DJ-1 purification, human micro-
vascular endothelial cells-1 image, receptor binding competition assay, immuno-
precipitation, detection of VEGF concentration, visualization of vessel formation,
RNA extraction, quantitative reverse transcription-PCR, immunoblotting and
general reagents can be found in the Supplementary Information.
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