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The Journal of Immunology

Extracellular Vesicles Derived from Gram-Negative Bacteria,
such as Escherichia coli, Induce Emphysema Mainly via
IL-17A–Mediated Neutrophilic Inflammation

You-Sun Kim,*,†,1 Won-Hee Lee,‡,1 Eun-Jeong Choi,‡,1 Jun-Pyo Choi,x,1 Young Joo Heo,*

Yong Song Gho,‡ Young-Koo Jee,{ Yeon-Mok Oh,*,† and Yoon-Keun Kimx

Recent evidence indicates that Gram-negative bacteria–derived extracellular vesicles (EVs) in indoor dust can evoke neutrophilic

pulmonary inflammation, which is a key pathology of chronic obstructive pulmonary disease (COPD). Escherichia coli is a ubiq-

uitous bacterium present in indoor dust and secretes nanometer-sized vesicles into the extracellular milieu. In the current study,

we evaluated the role of E. coli–derived EVs on the development of COPD, such as emphysema. E. coli EVs were prepared by

sequential ultrafiltration and ultracentrifugation. COPD phenotypes and immune responses were evaluated in C57BL/6 wild-type

(WT), IFN-g–deficient, or IL-17A–deficient mice after airway exposure to E. coli EVs. The present study showed that indoor dust

from a bed mattress harbors E. coli EVs. Airway exposure to E. coli EVs increased the production of proinflammatory cytokines,

such as TNF-a and IL-6. In addition, the repeated inhalation of E. coli EVs for 4 wk induced neutrophilic inflammation and

emphysema, which are associated with enhanced elastase activity. Emphysema and elastase activity enhanced by E. coli EVs were

reversed by the absence of IFN-g or IL-17A genes. In addition, during the early period, lung inflammation is dependent on IL-17A

and TNF-a, but not on IFN-g, and also on TLR4. Moreover, the production of IFN-g is eliminated by the absence of IL-17A,

whereas IL-17A production is not abolished by IFN-g absence. Taken together, the present data suggest that E. coli–derived EVs

induce IL-17A–dependent neutrophilic inflammation and thereby emphysema, possibly via upregulation of elastase activity. The

Journal of Immunology, 2015, 194: 3361–3368.

B
iological contaminants in indoor air can induce immune
dysregulation in the lung, resulting in inflammatory
pulmonary disorders, such as asthma and chronic ob-

structive pulmonary disease (COPD) (1). In terms of the immu-
nopathogenesis of airway inflammation, the eosinophilic subtype
represents inflammation induced by IL-4– and IL-13–secreting
Th2 cells, whereas the neutrophilic subtype is related to both
IFN-g– and IL-17–dependent Th1 and Th17 inflammation (2–4).

Neutrophilic inflammation is known to be important in the COPD
pathogenesis (5). Emphysema (a key phenotype of COPD) is an
important cause of irreversible airflow limitation, because the
destruction of lung tissue around small airways seen in emphy-
sema patients prevents the airways from holding their functional
shape upon exhalation (6, 7).
Extracellular vesicles (EVs) are spherical bilayered phospho-

lipids ranging in size from 20 to 200 nm in diameter, so-called
nanovesicles, that are produced ubiquitously from all Gram-
negative bacteria and some Gram-positive bacteria investigated
to date (8, 9). Previous biochemical and proteomic studies have
revealed that Gram-negative bacteria–derived EVs are composed of
outer membrane proteins, LPS, outer membrane lipids, periplasmic
proteins, DNA, RNA, and other factors associated with virulence (8).
The fact that bacteria-derived EVs harbor pathogen-associated mo-
lecular patterns (PAMPs), such as LPS, peptidoglycan (PG), lipo-
teichoic acid (LTA), that induce innate immunity, and also harbor
proteins that induce T cell response, led to us the notion that the
inhalation of bacterial EVs can evoke immune dysregulation and
inflammation in the lung.
Escherichia coli is one of the most important model organisms

of Enterobacteriaceae. Our previous work has shown that E. coli–
derived EVs induce systemic inflammation mimicking sepsis after
entering the bloodstream (10) and that EVs from indoor dust and
also from Staphylococcus aureus can induce neutrophilic pulmo-
nary inflammation (11, 12). In the current study, we hypothesized
that EVs from Gram-negative bacteria, especially E. coli, are an
important cause of neutrophilic inflammation and thereby em-
physema in the lung. To test this, we aimed to evaluate whether
E. coli EVs are causally related to the pathogenesis of emphy-
sema. We also tried to determine the immunologic mechanisms of
emphysema induced by E. coli EVs.
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Materials and Methods
Mice and cell cultures

Wild-type (WT), IFN-g–deficient, and TNF-a–deficient mice (12, 13)
(all C57BL/6 background) were purchased from The Jackson Laboratory
(Bar Harbor, ME). IL-17A–deficient mice (C57BL/6 background) were
gifted from Y.-C. Sung (Pohang University of Science and Technology
[POSTECH], Pohang, Republic of Korea) (12). TLR2-deficient and TLR4-
deficient mice (12) (both of C57BL/6 background) were purchased from
Oriental BioService (Kyoto, Japan). These mice were bred in pathogen-
free facilities at POSTECH. The animal experimental protocols were ap-
proved by the Institutional Animal Care and Use Committee at POSTECH
(permit number 2011-01-0021). MH-S cells (mouse alveolar macrophages
originated from BALB/c; American Type Culture Collection) were cul-
tured in RPMI 1640 medium supplemented with 10% FBS and grown in
the presence of 100 U/ml penicillin and 100 mg/ml streptomycin.

The collection of indoor dust

Indoor dust was collected from a bed mattress in an apartment using a
vacuum cleaner (Samsung, Seoul, Republic of Korea). The dust was stored
at room temperature until further use (11).

The preparation of EVs from indoor dust and E. coli

EVs were isolated from indoor dust and from the culture supernatants of
E. coli isolated from the peritoneal lavage fluid of mice with cecal ligation
and puncture, as described previously (10, 11). Briefly, the dust samples were
incubated in PBS for 12 h at 4˚C with stirring and centrifuged twice at
10,000 3 g for 15 min. E. coli in lysogeny broth was cultured at 37˚C and
centrifuged twice at 10,000 3 g for 15 min. Supernatants were filtered with
a 0.22-mm vacuum filter to remove any remaining cells. EVs were prepared
by centrifugation in a 45 Ti rotor (Beckman Instruments, Fullerton, CA) at
150,000 3 g for 3 h at 4˚C. EVs were diluted in PBS and stored at 280˚C.

The in vitro analysis of innate immune response

To confirm the role of LPS in E. coli–derived EV-induced cytokine pro-
duction, MH-S cells were incubated with E. coli–derived EVs (100 ng/ml)
in the presence or the absence of polymyxin B (PMB; 1 mg/ml). To ex-
amine in vitro innate immune responses induced by E. coli–derived EVs in
WT, TLR2-deficient, and TLR4-deficient mice, peritoneal macrophages
were isolated as described previously (12). Briefly, thioglycollate-elicited
peritoneal macrophages were seeded in 24-well plates, incubated with
E. coli–derived EVs, TLR2 agonist (heat-killed Listeria monocytogenes,
107 cells/ml), or TLR4 agonist (LPS from E. coli K12), and the culture
supernatants were collected 16 h after the application. The levels of TNF-a
and IL-6 in culture supernatants were measured by ELISA.

In vivo protocol for E. coli–derived EVs on the development of
lung inflammation

To evaluate the effects of E. coli–derived EVs on the development of lung
inflammation, E. coli–derived EVs were administered intranasally to WT
C57BL/6, IFN-g–deficient, IL-17A–deficient, or TNF-a–deficient mice.
Lung inflammation was evaluated 24 h after the final application. PBS was
applied as a negative control. To inhibit LPS activity, PMB (1 mg) was
instilled intranasally with 100 ng E. coli–derived EVs.

The evaluation of COPD phenotypes

Cellularity in bronchoalveolar lavage (BAL) fluid was analyzed, as de-
scribed previously (1). Briefly, after counting the total number of cells in
the BAL samples, the cell were stained by Diff-Quik solution and were
classified as macrophages, lymphocytes, neutrophils, or eosinophils. To
detect emphysema, lungs were fixed in buffered 4% formaldehyde and
embedded in paraffin. Sections were stained with H&E. Chord length was
measured using the Computer Assisted Stereological Toolbox system
(Olympus, Tokyo, Japan). In H&E-stained lung sections, the average

FIGURE 1. Indoor dust harbors E. coli EVs that induce pulmonary inflammation. (A) Western blotting of soluble factors (SF, 5 mg) and EVs (5 mg) in

indoor dust using E. coli EV–specific polyclonal Abs. (B) PCR of dust EVs using E. coli–specific primer. (C) Whole-mount imaging of lung tissues using

E. coli EV-specific polyclonal Abs (green) and SP-C (red) 1 h after airway administration of E. coli EVs (1 mg) and PBS. The nuclei were counterstained by

Hoechst (blue). Scale bars, 30 mm. (D) Total cells in BAL fluid 2, 4, 8, and 24 h after the airway application of different doses of E. coli EVs (n = 4/group).

(E) Cytokine levels in BAL fluid after the airway administration of E. coli EVs (1-, 10-, and 100-ng doses, respectively).
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interalveolar septal wall distance (mean linear intercept) was measured
separately by two people in a blinded fashion (14).

Whole-mount imaging

One microgram of E. coli EVs was administered intranasally to C57BL/6
mice. After 1 h, mice were sacrificed, and lungs were removed. Lungs
were fixed with 1% paraformaldehyde in PBS containing 1% sucrose,
blocked with 5% horse serum in TBST (0.3% Triton X-100 in TBS), and
incubated with anti-E. coli EV polyclonal Ab, which had been developed
in our laboratory by immunizing rabbits with the E. coli EVs, as previously
described with minor modifications (15), and anti–SP-C Ab (Santa Cruz
Biotechnology, Santa Cruz, CA). After treatment with Alexa-Fluor 488–
conjugated donkey anti-rabbit IgG and Alexa-Fluor 594–conjugated don-
key anti-goat IgG (Invitrogen, Carlsbad, CA), lungs were counterstained
with Hoechst (Sigma-Aldrich, St. Louis, MO) and analyzed using an
FV1000 laser scanning confocal microscope (Olympus).

Immunocytochemistry

MH-S cells were incubated with 1 mg/ml DiO (Invitrogen)-labeled E. coli
EVs in the presence or the absence of 10 mg/ml PMB for 6 h. Cells were
then washed with PBS, fixed with 4% paraformaldehyde in PBS containing
4% sucrose, permeabilized with 0.2% Triton X-100 in PBS, stained with
Hoechst (Sigma-Aldrich), and analyzed using an FV1000 laser scanning
confocal microscope (Olympus). To examine the role of TLRs in the up-

take of E. coli–derived EVs, the above protocol was applied to peritoneal
macrophages isolated from WT, TLR2-deficient, and TLR4-deficient mice.

Elastase activity

The elastase activity from lung lysates without detergent was measured
using an Elastase assay kit according to the manufacturer’s instructions
(Invitrogen).

Western blotting

Proteins from soluble and EV fractions isolated from indoor dust were
separated using SDS–PAGE and transferred to polyvinylidene difluoride
membranes. Blocked membranes were incubated with an E. coli EV
polyclonal Ab.

mRNA expression

A method of RT-PCR using dust EVs to detect E. coli EV 16S rRNA has
been described previously (16). The primers for E. coli EV 16S rRNAwere
59-GGAAGAAGCTTGCTTCTTTGCTG-39 and 59-AGCCCGGGGATTT-
CACATCTGACTTA-39. The measurement of matrix metalloproteinases
(MMPs) mRNA expression were performed by RT-PCR described
previously (16, 17). The real-time quantitative analysis of MMPs was
performed using the LightCycler 480 system (Roche Diagnostics,
Indianapolis, IN) with LightCycler 480 SYBR Green I master (Roche
Diagnostics).

FIGURE 2. The repeated airway application of E. coli EVs induces neutrophilic inflammation and thereby emphysema. (A–C) The different doses (1, 10,

and100 ng) of E. coli EVs were administered into the mouse airways (n = 5/group) twice weekly for 4 wk, and analyses were performed 24 h after the final

application. (A) Cellularity in BAL fluid; *p , 0.05 using two-way ANOVA. (B) Chord length (right panel) and representative lung histology (left panel).

H&E staining. Original magnification 3100. (C) The levels of IFN-g–inducible protein (IP)-10 and IL-6 in BAL fluid. (D) IFN-g and IL-17 levels in the

culture supernatant of lung T cells 6 h after stimulation with anti-CD3 and anti-CD28 Abs (each 1 mg/ml). (E) mRNA expression of MMP-9 and MMP-2

were measured in lung tissue from mice administered E. coli EVs (100 ng) twice weekly for 4 wk (n = 4/group). *p , 0.05 using ANOVA linearity testing.
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The measurement of cytokine levels

Cells isolated from regional lymph nodes were restimulated with plate-
bound anti-CD3 and CD28 Abs for 6 h. The culture supernatant was
collected and examined by ELISA. Cytokine levels from BAL fluid were
measured by ELISA, according to the manufacturer’s instructions (R&D
Systems, Minneapolis, MN).

Statistical analysis

For multiple comparisons among groups, ANOVA was initially used fol-
lowed by unpaired t or nonparametric Mann–Whitney U test between two
groups. To test for trends, the ANOVA linearity test was used. For sta-
tistical analysis, we used GraphPad Prism 5, and the statistical significance
was set a priori at p , 0.05.

Results
The presence of E. coli–derived EVs in indoor dust and their
uptake by lung resident cells

E. coli is a Gram-negative bacterium that is not confined to the
intestine, and its ability to survive for brief periods outside the
body makes it an ideal indicator organism to test indoor dust
samples for fecal contamination (18). In our previous report, in-
door dust harbors lots of EVs (11). Thus, we evaluated whether
indoor dust contains E. coli–derived EVs. The presence of E. coli
EVs in indoor dust was assessed using an anti-E. coli EV poly-
clonal Ab. The present data showed that the Ab reacted with EVs
in indoor dust but not soluble factors derived from indoor dust
(Fig. 1A). In addition, genotyping using an E. coli–specific 16S
rRNA primer showed that E. coli EVs were present in indoor dust
(Fig. 1B). Furthermore, it was determined that E. coli EVs are
taken up by entering the airways via resident lung cells. After the
airway administration of E. coli–derived EVs, whole-mount im-
aging of lung tissue labeled with an E. coli EV Ab indicated the
uptake of E. coli EVs into resident lung cells, including alveolar

type II cells (Fig. 1C). To evaluate innate immune response induced by
E. coli EVs, EVs were administered intranasally into the mouse air-
ways in differing doses of 1, 10, and 100 ng. Following the adminis-
tration of E. coli EVs, total cell number in BAL fluid was increased by
EVs in a dose-dependent manner (Fig. 1D). In mice receiving 10 and
100 ng E. coli EVs, the production of TNF-a and IL-6 in BAL fluid
also increased within 8 h after the administration (Fig. 1E).

The repeated inhalation of E. coli EVs induces neutrophilic
pulmonary inflammation and emphysema

To evaluate whether the repeated inhalation of E. coli EVs induces
neutrophilic inflammation and thereby structural changes in the
lung, E. coli EVs (1, 10, and 100 ng) were administered into the
mouse airways twice per week for 4 wk. The lung infiltration of
neutrophils was enhanced by the inhalation of E. coli EVs in
a dose-dependent manner (Fig. 2A). As for structural changes, the
inhalation of E. coli EVs induced emphysema in a dose-dependent
manner (Fig. 2B). In addition, the production of IFN-g–inducible
protein-10 and IL-6 (downstream mediators of IFN-g and IL-17,
respectively) was also significantly increased by airway exposure
to E. coli EVs in a dose-dependent manner (Fig. 2C). The airway
administration of E. coli EVs also dose-dependently enhanced the
production of both IFN-g and IL-17A by lung T cells (Fig. 2D).
Moreover, E. coli EVs enhanced the expression of MMP-2 and
MMP-9 mRNA in lung tissues (Fig 2E). Taken together, these
observations indicate that E. coli EVs can induce neutrophilic
inflammation and emphysema in a dose-dependent manner.

The role of IFN-g and IL-17A in the development of COPD
phenotypes induced by E. coli EVs

We evaluated the role of IFN-g and IL-17A in the development of
emphysema after airway exposure to E. coli EVs (100 ng) twice

FIGURE 3. Neutrophilic inflammation and emphysema induced by E. coli–derived EVs depend on both IFN-g and IL-17A. (A–C) E. coli EVs (100 ng)

were administered into the airways of WT, IFN-g–deficient, and IL-17A–deficient mice (n = 5/group) twice weekly for 4 wk, and analyses were performed

24 h after the final application. (A) Cellularity in BAL fluid. (B) Chord length (right panel) and representative lung histology (left panel). H&E staining.

Original magnification3100. (C) The levels of IFN-g and IL-17A in BAL fluid. (D) The levels of IFN-g and IL-17A in lymph nodes restimulated with anti-

CD3 and CD28 Abs for 6 h. *p , 0.05, **p , 0.01 using ANOVA.
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per week for 4 wk in IFN-g–deficient and IL-17A–deficient mice,
and WT control mice. The present study showed that the lung
infiltration of neutrophils induced by E. coli EVs was significantly
inhibited by the absence of IL-17A but not by the absence of
IFN-g (Fig. 3A). In contrast, emphysematous changes induced by
E. coli EVs were partially abolished by the absence of IFN-g or
IL-17 (Fig. 3B). Remarkably, the protein amount of IFN-g in BAL
fluid were absent in IL-17–deficient mice, whereas the BAL IL-
17A levels were not inhibited by the absence of IFN-g (Fig. 3C).
In addition, the production of IFN-g from regional lymph node
cells restimulated with anti-CD3 and CD28 Abs was also inhibited
by the absence of IL-17A, but IL-17A production was not di-
minished by the IFN-g absence (Fig. 4D). These findings suggest
that IL-17A is a key mediator in the development of emphysema
induced by exposure to E. coli–derived EVs and that the pro-
duction of IFN-g is dependent on IL-17A.

The early-phase effects of exposure to E. coli EVs

To evaluate the early-phase effects of E. coli EVs on the em-
physema pathogenesis, 100 ng E. coli EVs were administered into
the mouse airways and then evaluated 18 h after this application.
This experiment showed that neutrophilic inflammation and em-
physema were induced by E. coli EVs (Fig. 4A, 4B). Elastase
activity was enhanced in E. coli EV–treated mice in comparison
with PBS-treated mice (Fig. 4C). In addition, the mRNA expres-
sion of MMP-9, but not MMP-2, in the lung was increased by
the application of E. coli EVs (Fig. 4D). Taken together, these
observations indicate that E. coli EVs can induce emphysema,
possibly via protease and elastase activity of neutrophils recruited
by E. coli EVs.

The role of proinflammatory cytokines in early-stage
development of E. coli EV–induced emphysema

To evaluate the role of proinflammatory cytokines (IFN-g, IL-17A,
and TNF-a) on the emphysema pathogenesis causally related to
E. coli EVs, 100 ng EVs was administered into the airways of
mice in which the candidate genes had been disrupted, and then
phenotypes were evaluated 18 h after the application. This study
showed that lung inflammation induced by E. coli EVs was re-
versed by the absence of IL-17A or TNF-a (Fig. 5A). The elastase
activity enhanced by E. coli EVs was reversed by the absence of
IFN-g, IL-17A, or TNF-a (Fig. 5B). The mRNA expression of
MMP-9 enhanced by E. coli EVs was reversed by the absence
of IL-17A or TNF-a (Fig. 5C). Collectively, these findings suggest
that early immune responses, such as elaboration of proinflammatory
cytokines, are important in the development of emphysema via
protein degradation by inflammatory cells.

The role of TLR signaling in the early stage effects induced by
E. coli EVs

E. coli EVs harbor various PAMPs, including LPS and outer
membrane proteins, which can be recognized by pattern recog-
nition receptors, such as TLRs. We tried to elucidate the role of
TLR signaling in the development of lung inflammation induced
by E. coli EVs. The production of cytokine by E. coli EVs was
evaluated in TLR2-deficient and TLR4-deficient mice. Peritoneal
macrophages were isolated from WT, TLR2-deficient, and TLR4-
deficient mice and stimulated with E. coli EVs. The production of
TNF-a and IL-6 was abolished completely by the absence of
TLR4 but only partially by the absence of TLR2 (Fig. 6A). In
addition, we evaluated the role of TLRs on the uptake of E. coli

FIGURE 4. The early-phase effects of E. coli EVs on the development of emphysema. (A–D) E. coli EVs (100 ng) were administered once into the

airways of C57BL/6 mice (n = 6/group), and analyses were performed 18 h after the administration. (A) Cellularity in BAL fluid. (B) Mean linear intercept

(MLI). (C) Elastase activity using assay kit from lung lysate without detergent. (D) Quantitative analysis of the mRNA expression of MMP-2 and MMP-9

with real-time RT-PCR. The p values in (B)–(D) were analyzed with nonparametric Mann–Whitney U test between two groups. *p , 0.05 using ANOVA.

The Journal of Immunology 3365

 by guest on July 18, 2019
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


EVs by inflammatory cells. E. coli EVs were taken up by peri-
toneal macrophages isolated from WT mice but not from TLR4-
deficient mice (Fig. 6B). Taken together, these findings suggest
that TLR4 signaling is important in the uptake of E. coli EVs and
the production of proinflammatory cytokines induced by E. coli
EVs.

The role of LPS in E. coli EVs in the early-stage effects induced
by E. coli EVs

To examine the role of LPS in E. coli EVs in the development of
emphysema, PMB, LPS antagonist, was treated with E. coli EVs.
The uptake of E. coli EVs by MH-S cells (mouse alveolar mac-
rophages) was inhibited by PMB treatment compared with PBS
treatment (Fig. 6C). The production of TNF-a and IL-6 induced
by E. coli EVs was partly abolished by PMB treatment (Fig. 6D).
To assess the in vivo effect of LPS on phenotypes induced by
E. coli EVs, EVs were administered into the mouse airways with
or without PMB. This experiment showed that the number of in-
flammatory cells in BAL fluid was partly decreased by PMB
treatment compared with PBS treatment (Fig. 6E). In addition, the
production of IL-6 and TNF-a induced by E. coli EVs was also
partly inhibited by PMB treatment (Fig. 6F). Taken together, these
results suggest that LPS in E. coli EVs plays an important role in
the uptake of EVs by host cells.

Discussion
The role of infectious agents in the etiology of diseases once
believed to be noninfectious is increasingly being recognized (19).
Noxious or biological contaminants in indoor air can induce
chronic inflammatory pulmonary disorders, such as asthma and
COPD (20). Common biological contaminants in indoor dust in-

clude viruses, bacteria, fungi, dust mites, and pet dander (21, 22).
Previous reports indicate that organic dust can induce airway
inflammation related with Th1/Th17 cell responses or TLR2
signaling (23, 24). Our previous findings showed that indoor
dust collected from bed mattress induces neutrophilic pulmo-
nary inflammation and that EVs in indoor dust also induce
neutrophilic pulmonary inflammation, which is related with
Th1 and Th17 cell responses (25). To our knowledge, this is the
first report demonstrating that EVs derived from Gram-negative
bacteria, especially E. coli, can induce neutrophilic inflam-
mation and thereby emphysema mainly in an IL-17A–depen-
dent manner. We also demonstrate that the TLR4-signaling
pathway is critical in the development of E. coli EV–induced
phenotypes.
Gram-negative bacteria, including E. coli, produce EVs during

normal growth (26). Gram-negative bacteria–derived EVs contain
a wide variety of PAMPs, which can be capable of inducing innate
immune responses and include LPS, outer membrane lipids, outer
membrane proteins, periplasmic proteins, cytoplasmic proteins,
DNA, RNA, and other virulence-associated factors (8, 27). Our
previous study demonstrated that the entry of E. coli EVs into the
bloodstream induces systemic inflammation mimicking sepsis
(10). In addition, our previous work indicates that EVs in indoor
dust are important in the development of neutrophilic inflamma-
tion in the lung (11). Previously, we also found that the Gram-
positive bacterium S. aureus produces EVs (9), which may be
causally related to atopic dermatitis in the skin (28) and also neu-
trophilic inflammation in the lung (12). The present study showed
that the repeated inhalation of E. coli EVs induced neutrophilic
inflammation and thereby emphysema mainly via an IL-17A–
dependent mechanism. These findings suggest that bacteria-derived

FIGURE 5. The role of IFN-g, IL-17A, and TNF-a on the development of early-phase phenotypes induced by E. coli EVs. (A–C) E. coli EVs (100 ng)

were administered into the airways of C57BL/6 mice, IFN-g–deficient, IL-17A–deficient, and TNF-a–deficient mice (n = 5/group), and analyses were

performed 18 h after the administration. (A) Cellularity in BAL fluid. (B) Elastase activity using assay kit from lung lysate without detergent. (C) The

quantitative analysis of MMP-9 mRNA expression with real-time RT-PCR. *p , 0.05 using ANOVA.
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EVs may be a novel causative agent of inflammatory diseases
whose agent(s) are unknown.
Our previous data demonstrated that the repeated inhalation

of indoor dust can induce neutrophilic inflammation associated
with enhanced infiltration of IFN-g–positive and IL-17A–positive
T cells in the lung (11). Much clinical evidence indicates that
neutrophilic inflammation in the airways is related to asthma se-
verity (1). Neutrophilic inflammation is also important in the
pathogenesis of COPD (5). Most animal models of emphysema
are provoked by cigarette smoke, and IFN-g is also a key mediator
of cigarette-induced emphysema (29, 30). In addition, transgenic
studies have shown that high levels of IFN-g in the airways induce
not only noneosinophilic asthma but also emphysema (31, 32).
The present study showed that IFN-g is important in the devel-

opment of emphysema, but not neutrophilic inflammation, in-
duced by airway exposure to E. coli EVs and also in the elastase
activity enhanced by E. coli EVs. To sum up, these findings
suggest that IFN-g is involved in the development of emphysema,
possibly via elastin degradation by inflammatory cells.
Although recent evidence indicates that IL-17A contributes to

the recruitment of neutrophils in the lungs (33) and to the devel-
opment of asthma (3, 33, 34), the role of IL-17A in the emphy-
sema pathogenesis remains to be determined. The present data
show that both neutrophilic inflammation and emphysema induced
by E. coli EVs were abolished by the absence of IL-17A. In ad-
dition, elastase activity enhanced by E. coli EVs was found to be
absent in IL-17A–deficient mice. Recent data have shown that
Th17 cells can also produce IFN-g, in addition to IL-17A (35).

FIGURE 6. The role of TRL receptors and LPS on the development of lung inflammation induced by E. coli EVs. (A) The levels of TNF-a and IL-6 in

the culture supernatant of peritoneal macrophages (derived from WT, TLR2-deficient, and TLR4-deficient mice) incubated for 16 h with E. coli–derived

EVs (1, 10, and 100 ng/ml), TLR2 agonist (heat-killed Listeria monocytogenes, 107 cells/ml), or TLR4 agonist (LPS from E. coli K12, 100 ng/ml). (B) The

confocal microscopic images of peritoneal macrophages (derived from WTand TLR4-deficient mice) stimulated with DiO-labeled E. coli–derived EVs. (C)

The confocal microscopic images of MH-S cells stimulated with DiO-labeled E. coli EVs in the presence or the absence of PMB. In (B) and (C), nuclei were

counterstained with Hoechst (blue). Scale bars, 10 mm. (D) The levels of TNF-a and IL-6 in the culture supernatant of MH-S cells after stimulation with E. coli–

derived EVs (100 ng/ml) in the presence or the absence of PMB (1 mg/ml). For (E) and (F), mice were sensitized once with 100 ng E. coli–derived EVs with or

without PMB, and evaluation was performed 18 h after the administration. (E) BAL cellularity. (F) The levels of TNF-a and IL-6 in BAL fluid. *p , 0.05 using

nonparametric Mann–Whitney U test between E. coli EV–only treated group and E.coli EV– and PMB-treated group. DIC, differential interference contrast.
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Interestingly, the current study showed that IFN-g production was
completely abolished by the absence of IL-17A, whereas IL-17A
production was unaffected by the absence of IFN-g. Taken to-
gether, these findings imply that IL-17A is a key mediator in the
development of neutrophilic inflammation and emphysema in-
duced by E. coli EVs, in which IFN-g appears to be produced by
Th17 cells rather than Th1 cells.
LPS, a component of the outer membrane of Gram-negative

bacteria, is ubiquitously present in the indoor environment and
induces the production of proinflammatory and immune modu-
lating mediators via TLR4 (36, 37). The present study showed that
E. coli EV uptake by macrophages is dependent on both LPS and
TLR4 signaling. In addition, lung inflammation and the produc-
tion of proinflammatory mediators induced by E. coli EVs are
markedly inhibited by the absence of TLR-4 and also partly
inhibited by the absence of TLR-2. In addition, the uptake of
E. coli EVs by macrophages was completely abolished by the
absence of TLR-4 or by PMB treatment. Collectively, these findings
suggest that signals other than LPS are also involved in the devel-
opment of emphysema phenotypes induced by E. coli EVs; however,
the interaction of LPS in E. coli EVs and the TLR4 receptor is
critical in the uptake of EVs by inflammatory cells.
In summary, our present data indicate that airway exposure to

EVs derived from E. coli, the most important model organism of
enteric Gram-negative bacteria, can induce neutrophilic inflam-
mation and emphysema mainly in an IL-17A–dependent manner.
Moreover, the present in vitro and in vivo data show that the TLR4
receptor is important in the development of immune and patho-
logic phenomena induced by E. coli EVs mainly via initial in-
teraction between LPS in E. coli EVs and the TLR4 receptor.
Thus, EVs derived from Gram-negative bacteria, including E. coli,
represent a novel target for the control of COPD.
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