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The Journal of Immunology

IL-12p40 Homodimer Ameliorates Experimental
Autoimmune Arthritis

Seon-Yeong Lee,*,†,1 Young Ok Jung,‡,1 Doo-Jin Kim,x Chang-Min Kang,*

Young-Mee Moon,*,† Yu-Jung Heo,* Hye-Jwa Oh,* Seong-Jeong Park,x Se-Hwan Yang,x

Seung Ki Kwok,* Ji-Hyeon Ju,* Sung-Hwan Park,* Young Chul Sung,x Ho-Youn Kim,*,2

and Mi-La Cho*,†,2

IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40

subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic

effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R

antagonist–knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflamma-

tory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of

arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if

transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell

proliferation. It also induced CD4+CD25+Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic

acid receptor–related organ receptor gt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17

cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis

successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23

signaling. The Journal of Immunology, 2015, 195: 3001–3010.

T
h cells perform an essential role in the immune system by
producing distinct cytokines. In addition to Th1 cells and
Th2 cells, a subset of Th cells that produce IL-17 is known

as Th17 cells (1). IL-17 is an inflammatory cytokine that strongly
affects various stromal cells. IL-17 mediates inflammatory re-
sponses by recruiting inflammatory cells, inducing angiogenesis,
and stimulating the production of proinflammatory mediators from

endothelial and epithelial tissues (2). IL-17 is known as a key
cytokine in a diverse group of autoimmune diseases and immune-

mediated diseases, including psoriasis, rheumatoid arthritis (RA),

multiple sclerosis, inflammatory bowel disease, and asthma (3, 4).

In RA, IL-17 enhances other proinflammatory cytokines, like IL-

6, in fibroblast-like synoviocytes and shows synergistic effects

with inflammatory cytokines, such as TNF-a and IL-1 (5, 6). It is

now known as a key cytokine in the propagation of joint inflam-

mation and destruction (7). Retinoic acid receptor-related organ

receptor (ROR)gt was recently identified as the master transcrip-

tion factor guiding Th17 differentiation (8).
IL-23 is a key cytokine that induces expansion of Th17 cells (9,

10), and it is overexpressed in RA synovial tissues (9). It consists

of the unique p19 and p40 subunits. p40 is also a subunit of IL-12,

a heterodimeric cytokine of p40 and p35 (11). IL-12 and IL-23

also share a common subunit in their receptor complex due to the

common p40 subunit (12). The IL-12p40 subunit, which con-

tributes to both IL-12 and IL-23, is often considered an antagonist

of these cytokines (13, 14). Recombinant murine IL-40 homo-

dimer [(p40)2] binds competitively to IL-12Rb1 and prevents IL-

12–mediated immune responses (15, 16). Recombinant murine

IL-12p40/p80 inhibited IL-23–mediated immune responses (17).

Recently, (p40)2 (or p80) was shown to be an inherently agonistic

cytokine with an independent role. The most widely known

function of (p40)2 is competitive inhibition of IL-12 and IL-23;

therefore, its primary role was assumed to be anti-inflammatory.

However, proinflammatory properties for (p40)2 were described

in various reports. It acts as a chemoattractant for macrophages

and pathogen-induced dendritic cells (18) and induces inflam-

mation and fibrosis of the lung (19). Allograft rejection by in-

ducing IFN-g production by CD8+ T cells (20) and macrophage

accumulation (21) were reported. Fathman and colleagues (22)

demonstrated that local delivery of IL-12p40 by T cells inhibited
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collagen-induced arthritis (CIA) by suppressing the autoimmune
response. Recently, Kim et al. (23) reported that IL-12p40 homo-
dimer attenuated autoimmune colitis by suppressing Th17 cells.
Regulatory T cells (Tregs) are a specialized subpopulation of

T cells that suppress activation of the immune system and, thereby,
maintain immune system homeostasis and tolerance to self-antigens.
The best characterized Tregs are the CD4+, CD45RBlow, and CD25+

subsets (24). CD4+CD25+ Tregs express Foxp3, a unique tran-
scription factor that is critically important in the development and
function of these cells (25). Defects in Treg function are important
in the pathogenesis of autoimmune diseases. Adoptive transfer of
activated regulatory cells inhibits CIA (26), and induction of Tregs
by immunomodulatory agents could ameliorate CIA and maintain
immune tolerance (27).
The aim of this study was to investigate the potential therapeutic

effect of the (p40)2 subunit in an experimental animal model of
RA. Administration of (p40)2 demonstrated therapeutic effects in
arthritis animal models. The therapeutic effect of (p40)2 was
exerted on multiple levels and was associated with the induction
of CD4+CD25+Foxp3+ Tregs and with suppressive effects on
Th17 cells.

Materials and Methods
Animals

Seven- to twelve-week-old male IL-1Ra2/2 mice were maintained in
groups of two to four animals in polycarbonate cages in a semispecific
pathogen–free environment. Six- to eight-week-old male DBA1/J mice
(SLC, Shizuoka, Japan) were maintained in an semispecific pathogen–free
environment. The Animal Research Ethics Committee at the Catholic
University of Korea examined and approved all experimental procedures.

Isolation of CD4+ T cells

Cell pellets were prepared from the spleens of CIA mice. Anti-mouse CD4
MicroBeads were used, as recommended by the manufacturer (Miltenyi
Biotec, Bergisch Gladbach, Germany). Briefly, cells were resuspended in
100 ml MACS buffer (1% BSA, 5 mM EDTA, and 0.01% sodium azide).
CD4 MicroBeads (1 3 107 cells/10 ml) were added and incubated for
10 min at 4˚C. Cells were diluted in 10 ml MACS buffer, pelleted,
resuspended in 500 ml, and separated magnetically in an AutoMACS
magnet fitted with a MACS MS column (Miltenyi Biotec).

Cell culture

Isolated CD4+ T cells (5 3 105) from CIA mice were incubated with
IL-23 (0.1, 1, 10 ng/ml) and IL-23 (10 ng/ml) plus IL-23p19 Ab (0.1, 1,
10 mg/ml), IL-12p40 Ab (0.1, 1, 10 mg/ml), soluble IL-23R (0.01, 0.05,
0.1 mg/ml), or (p40)2 (0.01, 0.05, 0.1 mg/ml) for 3 d. To investigate the
suppressive effect of (p40)2 on IL-17 and IFN-g production induced by
IL-23, isolated CD4+ T cells were cultured with IL-23 (0.1, 1, 10 ng/ml),
IL-12p70 (0.1, 1, 10 ng/ml), and IL-23 (10 ng/ml) plus (p40)2 (0.1, 1, 5,
10, 20, 100 ng/ml) for 3 d.

Generation of recombinant adenoviruses

The recombinant replication-defective adenovirus expressing mouse (p40)2
was generated using the AdEasy Vector System (Qbiogene, Carlsbad, CA).
Briefly, IL-12(p40)2 cDNA was subcloned into the pShuttle-CMV vector
(Qbiogene) using the BglII and XhoI/XbaI restriction sites. The pShuttle-
CMV construct was cotransfected with pAdEasy into Escherichia coli
BJ5183 via electroporation. The recombinant construct was transfected
into 293 cells using the calcium phosphate method, and the generated
recombinant adenovirus was expanded and purified by cesium-gradient ul-
tracentrifugation. The adenovirus containing EGFP was produced in a simi-
lar manner. The titer of each purified virus was determined by TCID50 assay.

(p40)2 for prevention and therapeutic effect in IL-1Ra2/2 mice

For the preventative effect of (p40)2, 7-wk-old male mice (n = 10) were
injected intra-articularly with 1 3 106/PFU (p40)2 vector or mock vector.
Three days later, the mice were reinjected intra-articularly with 1 3 106/
PFU the (p40)2 vector or mock vector. To examine the therapeutic effect
of (p40)2, 11-wk-old male mice (spontaneous arthritis induction) were
injected intra-articularly with 1 3 106/PFU the (p40)2 vector or mock

vector. Three days later, the mice were reinjected intra-articularly with
1 3 106/PFU the (p40)2 vector or mock vector.

Induction of arthritis and (p40)2 for prevention and therapeutic
effect in CIA mice

Seven-week-old male DBA1/J mice (Orient, Seongnam-si, Korea) (n = 10)
were immunized intradermally at the base of the tail with 100 mg bovine
type II collagen (CII; Chondrex, Seattle, WA) emulsified in CFA
(Arthrogen-CIA; Chondrex) (1:1, w/v, day 0). Two weeks later, the
mice were boosted by intradermal injection with 100 mg bovine CII in
IFA (Chondrex) (1:1, v/v, day 14). (p40)2 was injected intra-articularly
three times at intervals of 9 d from day 22 before CIA induction. To
examine the therapeutic effect of (p40)2, p40 was injected intra-
articularly three times at intervals of 9 d after the booster (day 14).
The severity of arthritis was recorded using the mean arthritis index
(scale of 0–4), as reported previously (28).

Immunohistochemistry

Mouse joint tissues (n = 10) were fixed in 4% paraformaldehyde, decal-
cified in EDTA bone decalcifer, and embedded in paraffin. Sections (7 mm)
were prepared and stained with H&E and Safranin O to detect proteo-
glycans. The sections were dewaxed using xylene and dehydrated in
a gradient of alcohols. Endogenous peroxidase activity was quenched
with 3% methanol H2O2. Immunohistochemistry was performed using
a VECTASTAIN ABC Kit (Vector Laboratories, Burlingame, CA).
Tissues were incubated with the first IL-12p70, IL-17, IL-23, IFN-g,
TNF-a, and IL-6 Abs (R&D Systems), and the IL-1b Ab (Santa Cruz
Biotechnology, Dallas, TX) overnight at 4˚C in a biotinylated secondary
linking Ab, and then in a streptavidin-peroxidase complex for 1 h. The
final color product was developed using a DAB Chromogen Kit (Dako,
Carpinteria, CA). The sections were counterstained with hematoxylin and
photographed with an Olympus photomicroscope (Tokyo, Japan).

Immunohistochemistry scoring

The H&E-stained sections were scored for inflammation and bone erosion.
Inflammation was scored according to the following criteria: 0 = no in-
flammation; 1 = slight thickening of the lining layer or some infiltrating
cells in the underlying layer; 2 = slight thickening of the lining layer plus
some infiltrating cells in the underlying layer; 3 = thickening of the lining
layer, an influx of cells in the underlying layer, and the presence of cells in
the synovial space; and 4 = synovium highly infiltrated with many in-
flammatory cells. Cartilage damage was determined using Safranin O staining
and toluidine blue, and the extent of cartilage damage was scored according to
the following criteria: 0 = no destruction; 1 = minimal erosion limited to
single spots; 2 = slight to moderate erosion in a limited area; 3 = more
extensive erosion; and 4 = general destruction (28).

TRAP staining

Decalcified ankle joints were processed for paraffin embedding, and 7-mm-
thick tissue sections were prepared. These sections were stained for TRAP
with the leukocyte acid phosphatase kit (Sigma), according to the manu-
facturer’s protocol. TRAP+ cells with three or more nuclei were deemed to
be osteoclasts and were counted.

Ig measurement

The mice were bled from the eye after immunization, and individual sera
were analyzed for IgG, IgG1, and IgG2a (Bethyl, Montgomery, TX). IgG,
IgG1, and IgG2 were measured using an ELISA kit (Bethyl).

Real-time PCR

Expression of IL-23p19, IL-12, IL-1b, TNF-a, IL-6, IL-17, IFN-g, TGF-b,
Foxp3, and RORgt mRNA was determined by real-time PCR with SYBR
Green I (Roche Diagnostic, Mannheim, Germany). Reaction mixtures were
amplified in a LightCycler (Roche Diagnostic). Fluorescence curves were
analyzed with LightCycler software v.3.0. The expression levels were cal-
culated and corrected for the values of the endogenously expressed house-
keeping gene (b-actin) controls.

Intracellular cytokine staining and flow cytometry

IL-23–treated or IL-23 plus (p40)2–treated mouse spleen cells were stained
with anti-mouse CD4-PerCP mAb (eBioscience, San Diego, CA) and
anti-mouse CD25-FITC mAb (Miltenyi Biotec, San Diego, CA). After
staining, the cells were permeabilized and fixed with Cytofix/Cytoperm
(BD Pharmingen, San Diego, CA). Cells were stained with anti-mouse
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Foxp3-PE mAb (eBioscience) and subjected to flow cytometric analysis
using a FACSCalibur (Becton Dickinson).

Confocal stain

Tissue specimens were snap-frozen in liquid nitrogen and stored at 280˚C.
Tissue sections (7 mm) of spleens were preserved in 4% paraformaldehyde
and stained using directly labeled Abs to anti-mouse Foxp3-FITC mAb
(eBioscience), anti-mouse CD25-allophycocyanin Ab (BioLegend, San
Diego, CA), and anti-mouse CD4-biotin mAb (BD Biosciences, San
Jose, CA). Streptavidin Cy-3 (BD Biosciences) was added to PBS (pH
7.5) and incubated overnight at 4˚C. For STAT analysis, the tissues were
stained with anti-mouse p-STAT3 705, p-STAT3 727, p-STAT5, and anti-
mouse CD4-FITC mAb. Stained sections were analyzed using a confocal
microscopy system (LSM 510 Meta; Carl Zeiss, Oberkochen, Germany).

MLR

Irradiated APCs (13 105 cells) were used as stimulators, and CD4+ T cells
(1 3 105 cells) were used as responders. Plates were incubated for 72 h at
37˚C. All wells were pulsed with 0.5 mCi [3H]thymidine in 20 ml RPMI
1640 for 16 h. Thymidine incorporation was measured using the beta-
counter system (Packard Instrument Company, Meridan, CA).

Western blot analysis

Cells were cultured for 3 d in the presence of IL-23 or IL-23 plus (p40)2.
Then whole-cell lysates were prepared by homogenization in the lysis
buffer. Protein samples were separated on 10% SDS-PAGE and transferred
to a nitrocellulose membrane (Amersham Pharmacia Biotech, Uppsala,
Sweden). For Western blot hybridization, the membrane was preincubated
with 0.1% skimmed milk in 0.1% Tween-20 in TBS at room temperature
for 2 h. Abs to Foxp3, p-STAT3, STAT3, p-STAT4, STAT4, p-STAT5, and
STAT5 (Cell Signaling Technology, Danvers, MA) were added to the
membrane and incubated overnight at 4˚C. After washing with 0.1%
Tween-20 in TBS, horseradish peroxidase–conjugated secondary Abs
were added and incubated for 1 h at room temperature. Hybridized bands
were detected using the ECL detection kit and Hyperfilm ECL reagents
(Amersham Pharmacia Biotech).

Statistical analysis

All data are expressed as the mean 6 SD. Statistical analysis was
performed using SPSS 10.0 for Windows (SPSS, Chicago, IL). The
differences between groups were analyzed using an unpaired Student
t test, assuming equal variances. The p values ,0.05 were considered
significant.

FIGURE 1. (p40)2 inhibits IL-23–induced IL-17 production

in CD4+ T cells in CIA model. (A) IL-17 production was an-

alyzed by ELISA from the culture supernatants of spleen CD4+

T cells in CIA mice. Spleen CD4+ T cells were cultured with

IL-23 (0.1–10 ng/ml) or IL-23 (10 ng/ml) plus IL-23p19 mAb

(0.1–10 mg/ml), IL-12p40 mAb (0.1–10 mg/ml), IL-23R mAb

(0.1–10 mg/ml), soluble IL-23R (0.01–0.1 mg/ml), and IL-

12p40 (0.01–0.1 mg/ml). (B) Results in (A) as an indicated

inhibition percentage. (C and D) Spleen CD4+ T cells from

CIA mice were cultured with IL-23 (0.1–10 ng/ml) or IL-

12p70 (10 ng/ml) and IL-23 (10 ng/ml) plus IL-12p40 (indi-

cated dose). Production of IL-17 and IFN-g was analyzed by

ELISA. #versus IL-23 (10 ng/ml). Data are mean 6 SD and

are representative of three independent experiments. **p and
##p , 0.01, *p and #p , 0.05.
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Results

(p40)2 inhibited IL-23–induced IL-17 production

We investigated the suppressive effect of (p40)2 on IL-17 pro-
duction induced by IL-23 with CD4+ T cells from CIA mice. The

concentration of IL-17 was increased in a dose-dependent manner
in the presence of IL-23. IL-23p19 Ab, IL-12p40 Ab, IL-23R Ab,
soluble IL-23R, and (p40)2 all decreased the IL-17 level (Fig. 1A).
However, the percentage inhibition of IL-17 was the largest with
(p40)2, and 0.1 mg/ml of (p40)2 inhibited IL-17 production up to

FIGURE 2. (p40)2 treatment inhibits arthritis in IL-1RaKO and CIA mice. (A and B) Seven- or twelve-week-old IL-1RaKO mice (n = 10) were injected

intra-articularly with a 1 3 106/PFU (p40)2 vector two times at an interval of 3 d. (C and D) Six-week-old DBA1/J mice were injected with a 1 3 106/PFU

(p40)2 vector before or after CII immunization. Average clinical scores of IL-1RaKO and CIA mice are shown after injection (n = 5 for each group). (E and F)

All tissues were obtained from therapeutically treated in IL-1RaKO mice group [original magnification 310 (E) and 3200 (F)]. The joint tissue of IL-1RaKO

mice as represented by x-rays and photographs. The embedding paraffin was stained with H&E, Safranin O. Ankle joints were stained with TRAP. (G) Each

mouse group (therapeutically treated in the arthritis model) was bled from the eye after immunization, and individual sera were analyzed for IgG, IgG1, and

IgG2a using ELISA, respectively. Data are mean 6 SD and are representative of three independent experiments. *p , 0.05, **p , 0.01.
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69.2% (Fig. 1B). In the presence of 1 ng/ml of (p40)2, the con-
centration of IL-17 was decreased from 155 6 27 pg/ml to 88 6
21 pg/ml (Fig. 1C). On the contrary, the concentration of INF-g
induced by IL-23 was decreased with a higher concentration of
(p40)2 (Fig. 1D). The half-maximal (50%) inhibitory concentra-
tion of (p40)2 for INF-g was ∼10 ng/ml, which was 10-fold higher
than the concentration for IL-17 (Fig. 1D).

(p40)2 inhibited the development of arthritis in arthritis animal
models

We observed the effect of (p40)2 in vivo in the IL-1R antagonist–
knockout (IL-1RaKO) and CIA models. To determine the
preventive effect of (p40)2, we transferred the recombinant
replication-defective adenovirus expressing mouse (p40)2 before
the onset of arthritis (Fig. 2A, 2C). To see the therapeutic effect,
we transferred the (p40)2-adenovirus vector after the onset of ar-
thritis (Fig. 2B, 2D). The arthritis indexes were measured for 6 wk
for IL-1RaKO mice and 12 wk for CIA mice. The mean arthritis
index was significantly lower in (p40)2-transferred mice than in
control mice throughout the observational period. The therapeutic
effect of (p40)2 in these arthritis models also was observed
(Fig. 2B, 2D).
Histopathologic study of the hind leg joints showed normal joint

tissue and well-preserved joint space in (p40)2 therapeutically

treated mice compared with the extensive infiltration of inflam-
matory cells and loss of joint integrity in IL-1RaKO mice and
mock-treated mice (Fig. 2E). TRAP staining showed a differenti-
ation of osteoclasts in synovial tissues from therapeutically treated
mice in the arthritis model. The synovial tissues from (p40)2-
transferred mice were TRAP2 (Fig. 2F). IgG in the mice sera also
decreased in (p40)2-transferred mice (Fig. 2G). The subtype of the
decreased IgG was IgG2a, which is known to be related to the
Th1-immune response. The level of IgG1 related to the Th2-type
response was similar to that of IL-1RaKO mice.

(p40)2 inhibited inflammatory cytokines in IL-1RaKO mice

We performed immunohistochemical staining for various cyto-
kines in joints tissues from mock-treated and (p40)2 therapeuti-
cally treated IL-1RaKO mice. IL-23, IL-12p70, IL-17, INF-g, IL-
1b, TNF-a, and IL-6 were expressed strongly in joint tissues from
IL-1RaKO mice (Fig. 3A). Expression of those cytokines was
suppressed dramatically in joint tissues from (p40)2-transferred
mice. The protein and mRNA expression levels of cytokines were
checked in the serum and splenic cells. mRNA expression of IL-
23p19 and IL-12p70 was decreased markedly in splenic cells
from (p40)2-transferred mice (p , 0.01) (Fig. 3B–D). Next, we
evaluated the cytokine levels in joint cells. Expression of the
proinflammatory cytokines IL-1b, TNF-a, IL-6, and IL-17 was

FIGURE 3. (p40)2 inhibits inflammatory cyto-

kine expression in IL-1RaKO mice. (A–G) All

tissue and cells were obtained from therapeutically

treated IL-1RaKO mice. (A) IL-1RaKO mice joint

tissue was stained with mAb species for IL-23,

IL-12p70, IL-17, IFN-g, IL-1b, TNF-a, and IL-6

(obtained at 6 wk). Brown represents positive

staining for IL-23, IL-12p70, Il-17, IFN-g, IL-1b,

TNF-a, and IL-6 (original magnification 3200).

Data shown are representative of three indepen-

dent experiments. (B) Spleen cells of wild-type

(WT), mock vector, (p40)2 vector, and PBS mice

were harvested at the peak of disease (obtained at

6 wk). mRNA expression of IL-23p19 and

IL-12 was analyzed by real-time PCR. (C and

D) IL-23p19 and IL-12 production was ana-

lyzed using ELISA from the culture super-

natants of each group. (E) mRNA expression

of IL-1b, TNF-a, IL-6, IL-17, and IFN-g was

analyzed by real-time PCR in joint cells. (F

and G) Joint cells of the (p40)2 injection group

and control group were cultured with IL-23

and IL-12, with or without (p40)2, for 3 d.

mRNA expression of IL-17, IFN-g, IL-1b, and

TNF-a was assessed by real-time PCR. Data

are mean 6 SD and are representative of three

independent experiments. *p , 0.05, **p and
##p , 0.01.
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significantly lower in (p40)2-transferred mice (p , 0.01). The
level of INF-g was lower in (p40)2-transferred mice than in IL-
1RaKO mice, but the difference did not reach statistical signifi-
cance (Fig. 3E).

(p40)2 decreased IL-23– or IL-12–induced inflammatory
cytokine production

We evaluated the effect of (p40)2 on cytokine production induced
by IL-23 or IL-12 in vitro. The splenic cells obtained from mock-
treated IL-1RaKO mice and (p40)2 therapeutically treated mice
were cultured with IL-23, IL-23 plus (p40)2, IL-12, or IL-12 plus
(p40)2 for 3 d. We observed a significant decrease in IL-23–in-
duced IL-17, IL-1b, and TNF-a expression and IL-12–induced
INF-g expression by (p40)2 in splenic cells from mock-transferred
mice (Fig. 3F, 3G, ##p , 0.01). mRNA expression levels of
measured cytokines were significantly lower in splenic cells from
(p40)2-transferred mice than in cells from mock-transferred mice.

(p40)2 inhibited Ag-specific T cell proliferation and cytokine
production in CIA mice

We evaluated the effect of (p40)2 on the T cell–proliferation re-
sponse of CD4+ T cells from the splenic cells of CIA mice in the
therapeutic model 5 wk after the induction of arthritis. The T cell–
proliferative response was decreased markedly in splenic cells from
(p40)2 therapeutically treated CIA mice (Fig. 4A, **p , 0.01).
T cell proliferation was measured in CD4+ T cells and APCs for 3 d

after adding CII, CII plus (p40)2, OVA, or OVA plus (p40)2
(Fig. 4B). T cell proliferation increased significantly in splenic cells
from CIA mice and mock-treated mice in the presence of CII,
which suggests that the proliferation is CII specific. The change in
T cell proliferation in the presence of CII was not obvious in splenic
cells from (p40)2-transferred mice (Fig. 4B). Furthermore, we ob-
served that (p40)2 suppressed CII-specific T cell proliferation
in vitro (Fig. 4B, ##p , 0.01). Inflammatory cytokines were mea-
sured in the culture supernatant of CD4+ T cells and APCs for 3 d
after adding CII, CII plus (p40)2, OVA, and OVA plus (p40)2
(Fig. 4C). CII significantly increased the levels of IL-23, IL-17,
IL-1b, and TNF-a in T cell–APC cocultures from CIA and mock-
transferred mice but not (p40)2-transferred mice. (p40)2 in vitro
significantly suppressed the increase in inflammatory cytokines
(#p , 0.05, ##p , 0.01).

(p40)2 induced CD4+CD25+ Tregs in vivo and in vitro

Next, we verified the proportion of CD4+CD25+Foxp3+ Tregs in
the spleens of (p40)2-treated and mock-treated mice using con-
focal microscopy. Tregs were increased in the spleens from the
(p40)2-transferred mice (Fig. 5A).
We confirmed the effect of the Foxp3+ Treg induction of (p40)2

in vitro. CIA splenic cells were cultured for 72 h with IL-23 or IL-23
plus (p40)2 in vitro. The levels of Foxp3 protein, as measured by
Western blotting, increased significantly after 3 d of culture
with IL-23 plus (p40)2 (Fig. 5B). In addition, Foxp3+ Tregs were

FIGURE 4. (p40)2 inhibits Ag-specific T cell

proliferation and cytokine production in CIA.

(A–C) All cells were obtained from (p40)2-

treated or mock-treated CIA mice (obtained at

5 wk). (A) CII-reactive T cells (13 105/ml) and

irradiated (2500 rad) APCs (1 3 105/ml) iso-

lated from spleens of CIA mice, (p40)2-treated

mice, or mock-treated mice. The cells were

cocultured for 3 d. (B) T cells and irradiated

APCs isolated from CIA mice, (p40)2-treated

mice, or mock-treated mice were cocultured

with CII, OVA, and CII plus (p40)2 for 3 d, and

CD4+ T cell proliferation was measured. Data

are mean cpm of triplicate cultures. (C) The

culture supernatant was measured by ELISA

for IL-23, IL-17, IL-1b, and TNF-a. Data are

mean 6 SD and are representative of three

independent experiments. *p and #p , 0.05,

**p and ##p , 0.01.
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increased in the presence of (p40)2 plus IL-23 (6.93%) compared
with IL-23 alone (3.91%). The fluorescent intensity of the Foxp3
signal was increased significantly in the presence of (p40)2
(Fig. 5C, **p , 0.01). The expression of RORgt and IL-17 was
significantly decreased in cultures containing IL-23 plus (p40)2
compared with IL-23 alone (Fig. 5D, 5E, **p , 0.01). In con-
trast, the expression of Foxp3 and IL-10 was significantly in-
creased in cultures carried out in the presence of IL-23 plus
(p40)2 compared with IL-23 alone (**p , 0.01). The level of
TGF-b tended to be higher in cultures performed in the presence of
IL-12p40; however, this difference was not significant (Fig. 5E).
We observed the expression of CD4+CD25+Foxp3+ Tregs in the

spleens of mice using confocal microscopy. Tregs were increased
in the spleens of (p40)2-transferred mice (Fig. 5).

(p40)2 induced CD4+CD25+ Tregs through regulation of STAT
molecules

To evaluate the signal molecule of T cell regulation, we observed
the expression of p-STAT3 705, p-STAT3 727, and p-STAT5 in
spleens of wild-type, mock-treated, and (p40)2-treated mice using
confocal microscopy. p-STAT3 705 and p-STAT3 727 were de-
creased in the spleens of IL-12p40–transferred mice. In contrast,
p-STAT5 was potently increased in (p40)2-treated mice compared

with mock control mice (Fig. 6A). Next, we measured STAT3,
STAT4, and STAT5 in the spleen cells of CIA mice. CIA spleen
cells were cultured with IL-23 or IL-23 plus (p40)2 for 72 h. The
ratio of p-STAT/STAT was calculated. p-STAT3, which is impor-
tant in Th17 cell regulation, was increased with IL-23 and de-
creased with IL-12p40 (Fig. 6B, **p , 0.01). STAT4, which is
involved in Th1 cell regulation, was a little higher with IL-23
alone than with IL-23 plus IL-12p40. STAT5, which is related
to Treg regulation, was highly expressed only with IL-12p40
(Fig. 6).

Discussion
We observed the preventive and therapeutic effect of the (p40)2
subunit in autoimmune arthritis animal models. In this study, the
inhibitory effect on IL-17 production was strongest with (p40)2
compared with IL-23p19 Ab, IL-12p40 Ab, IL-23R Ab, and sol-
uble IL-23R. We found that (p40)2 blocked IL-17 effectively at
a much lower concentration compared with IL-12p40. (p40)2 sup-
pressed production of inflammatory cytokines, osteoclastogenesis,
and the Ag-specific T cell–proliferation response, and it modulated
Th17/Treg balance via STAT3 and STAT5.
In this study, we demonstrated that (p40)2 suppressed inflam-

matory arthritis via reciprocal regulation of Th17 and Tregs. We

FIGURE 5. (p40)2 induces CD4+CD25+

Foxp+ Tregs in vivo and in vitro. (A and B)

Spleen and joint tissue from (p40)2-injected

CIA and control mice were stained with

anti-mouse CD4-PE, anti-mouse CD25-

allophycocyanin, and anti-mouse Foxp3-

FITC. Stained spleen tissue was analyzed

using a confocal microscope (original

magnification 3400). Arrowheads indicate

Treg or Th17 cells. Tregs are purple. Data

shown are representative of three indepen-

dent experiments. (B and C) Spleen cells

were isolated from CIA mice. The cells

were cultured with IL-23 (10 ng/ml) and

IL-23 plus (p40)2 (10 ng/ml) for 3 d. (B)

Foxp3 protein was measured in cell lysates

by Western blot analysis using the Foxp3-

specific Ab. (C) Cultured cells were stained

with anti-mouse CD4-PerCP, anti-mouse

CD25-FITC, and anti-mouse Foxp3-PE.

CD4+CD25+Foxp3+ Tregs were analyzed

using FlowJo software. (D) RORgt and

Foxp3 mRNA expression was measured in

spleen cells by real-time PCR. (E) IL-17,

TGF-b, and IL-10 mRNA expression was

measured in spleen cells by real-time PCR.

Data are mean 6 SD are representative of

three independent experiments. *p , 0.05,

**p , 0.01.
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reported previously that simultaneous regulation of Th17 and
Tregs is important in the treatment of RA, because an imbalance
in Th17/Treg contributed to the development and progression of
RA (29–34). We observed that (p40)2 upregulated the generation
of CD4+CD25+Foxp3+ Tregs in an in vitro culture with spleen
cells from mice and in vivo with the splenic tissues from (p40)2-
transferred mice. CD4+CD25+ Tregs are known to play a key role
in self-tolerance and in the prevention of autoimmune diseases
(25, 35). We observed that (p40)2 increased the expression of
Foxp3 and decreased the expression of RORgt. Th17 cells were
shown to be differentiated from CD4+ T cells by cytokine-
mediated regulation and transcriptional programming. RORgt is
as a key regulator of Th17 cell differentiation (8). IL-21 and IL-23
induced RORgt, which, in synergy with STAT3, promoted IL-17
expression (36). STAT3 is a crucial component of Th17 cell dif-
ferentiation, whereas STAT5 functions as a downregulator of Th17
cells (37). STAT3 and STAT5 signal balance, rather than the ab-
solute magnitude of these molecules, is more important to the
generation of Th17 cells (38). We postulated that (p40)2 stimu-
lated STAT5 and suppressed STAT3 simultaneously, so (p40)2
also regulated the upregulation of Foxp3+Treg and the suppres-
sion of RORgt+Th17 (Fig. 6). We suggest that Fig. 6 explains the
mechanism of the antiarthritic property of (p40)2.
IL-23 is known to be essential to the in vivo function of Th17 cells

(36). However, the precise effect of IL-23 on Th17 cell differenti-
ation is not known, although it is important for the proliferation of
Th17 cells and for Th17 cell–mediated immune diseases. TGF-b
and IL-6 are essential cytokines for inducing Th17 cells. We re-
ported previously that IL-23 is a link between IL-1 and IL-17 and
that it is a central proinflammatory cytokine in the pathogenesis of
the IL-1Ra(2/2) model of spontaneous arthritis (39). The sup-
pressive effect of (p40)2 on arthritis in the IL-1Ra(2/2) model may
occur, in part, through antagonizing IL-23. Although (p40)2 is
known to inhibit both IL-12 and IL-23, the potency of inhibition of
the cytokines may be different. We observed that the concentration

of INF-g induced by IL-12 was decreased with a higher concen-
tration of (p40)2. Kim et al. (23) also observed that the suppressive
effect of (p40)2 is stronger for IL-23 than for IL-12. They sug-
gested that the affinity of (p40)2 for receptors of each cytokine
may be different. In their study, IFN-g production from mesenteric
lymph node cells was even increased. In our in vitro study, the
half-maximal (50%) inhibitory concentration of (p40)2 for IFN-g
was 10-fold higher than the concentration for IL-17. The differ-
ential effect of (p40)2 on IFN-g in synovial cells and mesenteric
lymph node cells needs to be investigated further. A difference in
the concentration of IL-12Rs may be one possible explanation.
Brentano et al. (40) reported that p19, but not p40, was abun-

dantly expressed in RA synovium. They detected heterodimeric
IL-23 in only 5 of 28 patients. The differential expression of p19
and p40 in RA synovium may suggest that expression of p40 is
independent involvement of p19 in the pathogenesis of RA. We
did not observe expression of p19 and p40 in joint tissues of mice.
If most CIA animals only express p19, and not p40, the antiar-
thritic efficacy of (p40)2 may be primarily through inhibition of
IL-12. The expression of heterodimeric proteins of IL-23 and
IL-12, as well as the treatment efficacy of (p40)2 according to the
differential expression of the subunits, needs further investigation.
TRAP+ osteoclasts were found at the site of active bone ero-

sions in joint tissues in arthritis and are responsible for bone ero-
sions in inflammatory arthritis (41). Inhibition of osteoclastogenesis
is important for preventing bone erosion and joint destruction in
the treatment of RA. In our experiment, (p40)2-transferred mice
showed intact joint histology with negative TRAP staining, which
means that osteoclastogenesis was suppressed by (p40)2 in vivo.
IL-17 and IL-23 are important cytokines that activate osteoclas-
togenesis in arthritis (42, 43). The preventive effect of the bone
erosion by IL-17 neutralization using the soluble IL-17R:Fc fusion
protein in experimental arthritis was reported (44). Decreased
production of IL-17 and antagonizing IL-23 by (p40)2 may result
in inhibition of osteoclastogenesis in (p40)2-transferred mice.

FIGURE 6. (p40)2 induces CD4+CD25+

Foxp3+ Tregs through STAT molecule regula-

tion. (A) Spleen tissue from IL-12(p40)2–in-

jected CIA and control mice was stained with

anti-mouse p-STAT3 705–PE, anti-mouse p-

STAT3 727–PE, p-STAT5–PE, and CD4-FITC.

Stained spleen tissue was analyzed using a con-

focal microscope (original magnification 3400).

STAT+ T cells are yellow. Data shown are rep-

resentative of three independent experiments. (B)

Spleen cells from CIA mice were stimulated

with IL-23 (10 ng/ml) and IL-23 (10 ng/ml) plus

IL-12p40 (10 ng/ml). Protein levels of STAT3,

STAT4, STAT5, and the phosphorylated forms of

STAT were measured in cell lysates by Western

blot analysis using a specific Ab for STAT (left

panel). Data are shown as the mean6 SD (right

panel). Data are representative of three inde-

pendent experiments. *p , 0.05, **p , 0.01.
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RA is a chronic autoimmune disease in which inflammatory
cytokines play essential roles in its pathogenesis. TNF-a is con-
sidered a key cytokine in the pathogenesis of RA, and the efficacy
of TNF-a blockade in the treatment of RA is well documented.
The additional role of IL-23 and IL-17 in RA pathogenesis was
suggested recently. Unexpectedly, blockade of TNF increased the
expression of IL-23p40 and Th17 cells in CIA mice (45). This
observation may explain the nonresponse of some RA patients to
TNF-a blockade. The therapeutic effect of IL-17 blockade has
been assessed in many studies in murine models of arthritis, and
clinical trials blocking IL-17 in patients with RA are ongoing.
However, the effect is still unknown and needs to be studied as the
most physiologically relevant target of IL-17. Our results suggest
that blocking IL-23 and IL-17 by (p40)2 may be a useful pre-
ventive and therapeutic method in inflammatory arthritis.
In summary, we demonstrated the powerful inhibitory effects of

(p40)2 on the development of inflammatory arthritis in an animal
model of RA. The results showed that (p40)2 inhibited the gen-
eration of Th17 cells, whereas it stimulated the generation of
Tregs via the STAT3 and STAT5 pathways.
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