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PAPER

One-Step Error Detection and Correction Approach for Voice Word
Processor∗

Junhwi CHOI†a), Seonghan RYU†b), Kyusong LEE†c), Nonmembers, and Gary Geunbae LEE†d), Member

SUMMARY We propose a one-step error detection and correction in-
terface for a voice word processor. This correction interface performs anal-
ysis region detection, user intention understanding and error correction ut-
terance recognition, all from a single user utterance input. We evaluate the
performance of each component first, and then compare the effectiveness
of our interface to two previous interfaces. Our evaluation demonstrates
that each component is technically superior to the baselines and that our
one-step error detection and correction method yields an error correction
interface that is more convenient and natural than the two previous inter-
faces.
key words: speech recognition, natural language processing, languages
and software systems

1. Introduction

A voice word processor is an automatic speech recognition
(ASR) system that translates speech input into the correct
orthographic form of text. Even when a modern ASR sys-
tem has a low error rate, the recognition results frequently
include incorrect words. There have been so many studies
on reducing ASR error [2]–[6], but in focus of word proces-
sor interface, an error correction process that user performs
is still required to perfect a document. This correction pro-
cess can be performed by selecting an erroneous portion of
the text using a keyboard, a mouse, or other devices and
speaking replacement text [7]–[11]. However, in some us-
age scenarios, error correction using only voice commands
is required. For example, a handicapped person who does
not have use of his or her arms may want to use only voice
to correct errors. In addition, users initially tend to try to
correct mis-recognized results using their own speech and
often remain in the same speech modality even when faced
with repeated recognition errors. Therefore, error correc-
tion using only voice commands may also be convenient for
non-handicapped users.
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In general, conventional voice-only error correction is
a two-step process: (1) the users speak a portion of the rec-
ognized text to select a target region to correct, then (2) they
speak replacement text. These two steps can perform one
correction. However, as Mcnair and Waibel [12] suggest, the
correction process can instead be performed in a single step.
In one-step correction, users speak only their replacement
text, and the system automatically recognizes it correctly
and finds the target region to replace. However, the conven-
tional voice-only error correction method and the previous
one-step correction method assume that the voice word pro-
cessor is already in correction mode; therefore, these meth-
ods need a separated voice commands to enter and to exit
correction mode [9], [12].

In this paper, we propose a one-step error detection and
correction (OS-EDC) interface for a voice word processor.
OS-EDC is a process like the previous one-step error correc-
tion [12], but without any explicit command to enter correc-
tion mode. Our interface automatically understands whether
the intention of the current utterance is to input a new sen-
tence or to correct a mis-recognized sentence. Then, the sys-
tem detects the target region and replaces it with the current
utterance. To complement the understanding of user inten-
tion, our interface can provide an optional post-confirmation
interface. To demonstrate the effectiveness of our interface,
we evaluate it by comparison to two voice-only error correc-
tion systems: the conventional two-step process (CTP) and
the McNair & Waibel one-step process (MWOP).

To assist in understanding this paper, we define some
expressions. A current utterance is an utterance that has not
yet been classified by user intention. A correction utterance
is a current utterance which is classified by user intention
as correction. An insertion utterance is a current utterance
which is classified by user intention as non-correction. A
target utterance is already-typed recognition result in a doc-
ument just before the current utterance and is the target of
the current utterance. A target region is a region extracted
from the target utterance, and which is can be replaced with
the correction utterance if the user intention of the utterance
is correction. An error region is a region of the target utter-
ance, which consists of exact erroneous words. A reference
text is intended text which the user really wants to add to the
document.

The remainder of the paper is organized as follows:
Sect. 2 reviews some relevant previous work. Section 3
describes our proposed method component-by-component.
Section 4 describes the experimental design and presents the
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Fig. 1 Workflow of OS-EDC interface.

results of the experiments. Finally, Sect. 5 presents the con-
clusion of this work.

2. Previous Work

For accurate and robust OS-EDC, the system should achieve
two essential functionalities: First, the target region should
be accurately identified. Second, the system should under-
stand the purpose of the current utterance. This second task
corresponds to a decision to enter correction mode.

For the first functionality, Vertanen and Kristensson
[13] presented three new models for automatic local align-
ing the target utterance with the correction utterance: a 1-
best model, a word confusion network model, and a revision
model. This work achieved up to 87.1% of the alignment
success when aligning the target utterance with the correc-
tion utterance. When the users spoke the target region, they
achieved up to 97.2% of the alignment success. However,
aligning the target utterance with the target region is not suit-
able for one-step error correction, because the replacement
text is necessary to correct target region and that process is
only achievable by two-step error correction. Additionally,
their work is word-based alignment and does not reflect pho-
netic characteristics of a correction utterance. Our OS-EDC
method reflects phonetic characteristics of a correction ut-
terance, and also considers the recognition result text sur-
rounding the error region.

For the second functionality, previous methods such as
CTP and MWOP need explicit instructions like voice com-
mands to control the correction mode [10], [12]. CTP needs
two explicit commands: a target region selection command
and a replacement command. MWOP needs one explicit
command which covers both target region selection and re-
placement in a single step. Our OS-EDC method does not
need any explicit command, because the method includes a
user intention understanding process.

For an entire interface, CTP and MWOP need a com-
mand so the user must speak additional words. This re-
quirement causes inconvenience and ineffectiveness because
users must remember the exact command.

3. Method

3.1 OS-EDC Scenario

When using our interface (Fig. 1), a user utters a sentence
to type or correct, then our system detects the target region
for accurate understanding of user intention from a target ut-
terance which has already been typed. Then user intention
understanding (i.e., the classification of the intention of the
utterance as correction or non-correction) proceeds. When
the intention of the current utterance is classified as correc-
tion, recognition of the utterance is revised and the detected
target region is replaced automatically. Otherwise, the cur-
rent utterance is inserted at the end of the document. Ex-
ceptionally, if the current utterance is the first utterance of
the user, the current utterance is automatically regarded as
non-correction, because there is no utterance to correct. If
the user finds that the intention understanding process has
committed some errors, the user can use an optional post-
confirmation process. For example, if the user wants to type
‘I have an apple’, but the recognition result is ‘I have and
apple’, then to correct the error region, ‘and’, the user just
utters ‘an apple’. Then, the system detects the target region,
‘and apple’, and automatically determines that user inten-
tion is correction, then changes the target region ‘and apple’
changes to ‘an apple’.

In the post-confirmation process, our interface provides
four commands: a target region window control command, a
re-uttering command, a user intention changing command,
and a cancel command. Users can adjust target region by
using the target region window control command. If the
correction utterance is recognized with error but user inten-
tion is classified correctly, the user can use the re-uttering
command. The user intention changing command changes
correction to non-correction or non-correction to correction.
The post-confirmation process optionally complements the
OS-EDC process for perfect document error correction.

3.2 Target Region Detection

In this step the system identifies the target region in the tar-
get utterance. From the target region, the system extracts
features for user intention understanding to classify whether
the intention is correction or non-correction. When the user
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intention is classified as correction, the detected target re-
gion is replaced by the correction utterance.

Considering the characteristics of ASR error, the pro-
nunciation sequence of the correction utterance and that of
the target region are similar. Furthermore, for purposes
of correction, without explicit instruction, users tend to
speak correctly recognized text that surrounds the error re-
gion [13], [14]. The better the performance of the ASR sys-
tem is, the more similar the pronunciation sequences are (we
prove it in Sect. 4). Then, to detect the target region, the sys-
tem locally aligns the pronunciation sequence of the current
utterance to that of the target utterance. As a local alignment
algorithm, we use the Smith-Waterman algorithm [15] with
a mismatch penalty that is calculated from a phonetic con-
fusion matrix [16]. We assume that the correction utterance
consists of words, not pronunciations, so we detect every
word included in the pronunciation sequence that is aligned
by the local alignment.

In some cases, meaningless words that are caused by
disfluency mostly [17], such as ‘um’ or ‘ah’, can be attached
to the front or end of the recognition result. If the mean-
ingless words are attached to the target utterance, the tar-
get region should include them. However, if only the local
alignment of pronunciation sequences is considered, the tar-
get region cannot easily include these words. To solve this
problem, when the previous word or next word of the target
region is a meaningless word, the target region is extended
based on the bi-gram score of its part-of-speech (POS)† la-
bel. For extension, a meaningless word set should be pre-
pared. For bi-gram score calculation of POS label, we train
POS bi-gram models by using a POS-tagged corpus which is
used for the ASR language model. The meaningless words
may have comparatively low POS bi-gram score in relation
to the POS bi-gram scores of other words in the ASR out-
put. Then, if the meaningless word gets the lowest score in
relation to the POS bi-gram scores of the other words, the
word would be included in the target region.

3.3 User Intention Understanding

The key novel process in our interface is user intention un-
derstanding. This process classifies user intention as cor-
rection or non-correction. User intention understanding can
be achieved by exploiting two characteristics of correction
utterances. First, user correction utterances to ASR usually
have the characteristics of clear speech, which is a speak-
ing style adopted by a speaker aiming to increase the in-
telligibility for a listener. To increase the intelligibility of
their speech, users make on-line adjustments; typically, they
speak slowly and loudly, and articulate in a more exagger-
ated manner [18]–[20]. Furthermore, utterances for correc-
tion display these characteristics more conspicuously than
the utterances for non-correction [20]. Second, if the previ-
ous sentence has erroneous words and a user wants to cor-

†For Korean, we used Sejong POS tag set which consists of 45
tag labels.

rect it, then the next utterance is a correction utterance [13].
Therefore, the correction utterance is phonetically similar to
a target region of the target utterance. We approach the task
as a classification problem. We collect data from users, label
the data with intentions, and extract and refine some of the
data’s features.

3.3.1 Wizard of Oz Data Collection

To classify the user’s intention for the current utterance, we
should collect user utterances and label them as correction
or non-correction for training. Therefore, we collected data
using the Wizard of Oz (WOZ) method [21], in which a hu-
man supervisor simulates the operation of our OS-EDC in-
terface. The WOZ method is indispensable to observe the
human natural behavior to the voice error correction inter-
face [22].

Each user was required to use the system to create a
document. The user was guided regarding how to correct
mis-recognized results in ASR. In this process, we did not
impose any prosodic characteristics on the user, and thus,
we could collect data with the natural prosody of speech for
correction or non-correction.

The supervisor prepared 4∼5 mis-recognized sentences
from ASR for each task sentence. These prepared mis-
recognized sentences are the ones that had actually occurred
in ASR, because the presented situation should be a realistic
representation of using the OS-EDC interface. The prepared
sentences evenly included insertion errors, substitution er-
rors, and deletion errors. Then, the supervisor listened to
the user’s utterances from behind the system. The supervi-
sor showed the user a mis-recognized result on purpose to
elicit a correction utterance from the user. Then, the super-
visor replaced the error with the correct sentence.

We collected 910 utterances from 21 users with WOZ
method. The users consist of 18 male adults and 3 fe-
male adults. All the users have no experience about using
any voice word processor interface. We recorded all utter-
ances and labeled them with labels that indicated whether
the intention of the utterance was for correction or for non-
correction. Then, 494 utterances are labeled as correction
and 416 utterances are labeled as non-correction. Each utter-
ance has one sentence and average number of words is 8.01
(3.12 for correction sentences and 13.82 for non-correction
sentences). Using 121,000 Korean words language model,
the sentences have unigram perplexity of about 268.76 and
out-of-vocaburary rate of 0.02%. The overall duration of
the raw wave data is about 11,844sec including silence
and about 1,796sec for only voiced parts (1,035sec for
correction utterances and 761sec for non-correction utter-
ances). The average duration of the utterances is about
1.97sec (2.10sec for correction utterances and 1.82sec for
non-correction utterances). The min pitch of the voiced
parts is 80.51Hz and the max pitch of the voiced parts is
about 494.27Hz. The average intensity of the voiced parts
is about 77.45dB (78.11dB for correction utterances and
76.67dB for non-correction utterances). We refined the raw
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speech data to training data to use machine-learning tech-
niques. The training data consist of several instances. Each
instance contains the features explained below and is labeled
with the user’s intention by human annotators. However,
some features vary with each user and utterance, so we con-
structed the machine learning model with a focus on nor-
malizing those features.

3.3.2 Prosodic Features

First, to classify user intention, we focus on prosodic fea-
tures. Usually, prosodic features are used to classify clear
speech [18]–[20]. Based on the prosodic features on the
data, we found the characteristics of the clear speech in cor-
rection data rather than non-correction data. Within same
user, especially the pitch range and the intensity range of
the correction utterances are wider than those of the non-
correction utterances and the duration per syllable of the
correction utterances is larger than that of the non-correction
utterances, so that we choose prosodic features including
pitch, intensity and duration features.

For all users and utterances, the prosodic features
should be normalized [23]. Then, our method normalize the
prosodic features to the ratio of the features of a target re-
gion to those of the current utterance, where the target re-
gion is the sub-utterance of a target utterance sentence and
is detected from the target region detection. Then, the sys-
tem calculates the ratio of each prosodic feature between the
target region and the current utterance as

(Feature) Ratio =
(Feature) of T
(Feature) o f C

, (1)

where T is the target region and C is the current utterance.
The ratio value represents the direction of change as

well as the degree of change from the features of the target
region to the features of the current utterance; therefore, the
ratio produce confusion because the degree of change varies
among users. So we also use ‘tendency’, which represents
only the direction of change:

(Feature) Tendency

=

{
0 (Feature) Ratio > 1
1 Otherwise

. (2)

This equation means that if the feature of a current utterance
is larger than that of a target region, the tendency value is 1.

We separated the specific features into three categories
(Table 1).

3.3.3 Distance between Pronunciation Sequences

We measure the distance between the pronunciation se-
quence of the target region and the pronunciation sequence
of the current utterance. We use Levenshtein distance as a
distance measure, but this distance depends on the length of
the pronunciation sequence [24], [25]. Even when the differ-
ent proportions of two pronunciation sequences are equal,

Table 1 Normalized prosodic features for classifying user intention.

Prosodic
Category Specific Features
Pitch Ratio of maximum pitch

Ratio of minimum pitch
Tendency of max pitch
Tendency of min pitch

Intensity Ratio of maximum intensity
Ratio of minimum intensity
Tendency of maximum intensity
Tendency of minimum intensity

Duration Ratio of target utterance duration
per Syllable Ratio of target region duration

Tendency of target utterance duration
Tendency of target region duration

the shorter pronunciation sequence has a lower Levenshtein
distance value; therefore, it must be normalized as

Distance =
LD

l
(3)

where LD is the Levenshtein distance value between the pro-
nunciation sequence of target region and the pronunciation
sequence of the current utterance, and l is the length of the
pronunciation sequence of the current utterance. Low values
indicate high similarity between pronunciation sequences.

4. Experiments

First, we evaluate each component. Then we combine all
components into an OS-EDC interface and perform quanti-
tative and qualitative evaluation.

4.1 Target Region Detection

Accurate detection of the target region is important when er-
roneous words have occurred in the target utterance. There-
fore, detection accuracy must be evaluated. To measure the
target region detection accuracy, the system shows sentences
with ASR errors to users, and the users then speak a cor-
rection utterance while selecting directly the target region
that they intend to replace. We evaluate the detection accu-
racy by comparing the user-selected target region with the
system’s automatically detected target region. We evaluate
full-region-unit accuracy rather than word-unit accuracy, be-
cause if the detected region does not match perfectly, it will
create additional correction tasks. The full region detection
accuracy equation is

Full Region Detection Accuracy

=
number of perfectly matched pairs

number of total pairs
,

(4)

where the pair consists of the user-selected region and
the system’s automatically detected region and ‘perfectly
matched pair’ means the pair which the user-selected region
and the system’s automatically detected region are equal.

We prepared 540 sentences with a total of about 5,800
Korean syllables, and each sentence included one or two
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Fig. 2 Distribution of correction instances by the tendencies of prosodic features.

Table 2 Full region detection accuracy of the target region detection.

Full region
detection
accuracy (%)

Baseline 84.28
(word based target region detection)
CN 85.12
CN+UNK 84.33
Pronunciation sequence based 93.53
target region detection
+ POS label n-gram based 93.88
target region extension

ASR errors. The training data were generated by the Hid-
den Markov Model (HMM) based ASR system [26] for
which the language model is constructed using approxi-
mately 121,000 Korean words. The users spoke corrections
to correct the sentences, and we compared the region which
users had selected with the region which had been detected
by our method. As a baseline, we used a word based target
region detection method, and also, we compared our method
with the previous work of Vertanen and Kristensson [13] us-
ing confusion network model (denoted CN) and confusion
network + unknown word model (denoted CN+UNK).

The best result was obtained by pronunciation se-
quence based method combined with the POS label n-gram
based method (Table 2). In correction utterance cases, this
combination can achieve 93.88% accuracy, because the av-
erage number of words in a correction utterance is about
3.12.

In case of erroneous and meaningless words such as
‘um’ or ‘ah’, is attached to the target sentence, only POS
label n-gram based target region extension includes those
words, because the words are not in the correction and thus
the users did not respeak the words for correction.

4.2 User Intention Understanding

4.2.1 Feature Verification

Before evaluating classification accuracy, we analyzed the
data to verify features that we used. We used the WOZ
method to collect utterances from 21 users. We generated
training data that included 910 instances from raw wave
data. We labeled 416 instances as non-correction and the
other 494 instances as correction. Each instance has an in-
tention label and 13 features (12 normalized prosodic fea-
tures and 1 normalized distance feature).

In correction utterances the various prosodic features
differed (Fig. 2). The best-separated prosodic feature was
target region duration per syllable: correction utterances
tended to be spoken more slowly than the target utterances.
Also, the correction utterances showed the characteristics of
clear speech, in that the pitch range and intensity range were
slightly wider than those of the target regions.

Correction and non-correction utterances had dif-
ferent distributions of normalized Levenshtein distance
(Fig. 3). Correction utterances had distance values than non-
correction utterances; this means that this distance feature is
effective for distinguishing correction utterances from non-
correction utterances.

4.2.2 Classification Accuracy

To evaluate the classification accuracy of our interface’s un-
derstanding of user intention, we used a support vector ma-
chine (SVM) as a classifier, because SVM is suitable to the
binary classification problem and features of our method are
well-separated as shown in Sect. 4.2.1. As kernel function,
we used radial basis function (RBF)†. We used 10-fold cross

†Hyper-parameter is setted with C: 1.0 and γ: 0.1.
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Fig. 3 Distribution of instances by the normalized Levenshtein distance between pronunciation
sequences.

Table 3 User intention classification accuracy.

Features Category Accuracy (%)
Baseline (majority) 54.29
Normalized pitch 73.27
Normalized intensity 72.12
Normalized duration per syllable 80.01
Pronunciation sequence distance 80.16
All normalized prosodic features 79.39
Normalized duration per syllable 81.72
+ pronunciation sequence distance

All normalized prosodic features 81.90
+ pronunciation sequence distance

Normalized prosodic features 84.62
without ratios + pronunciation
sequence distance

validation to evaluate our approach (Table 3). As a baseline,
we used the majority of utterances.

In voice word processor, the false correction and non-
correction caused duplicated tasks which make users un-
comfortable. Therefore, accuracy is the most important
evaluation value.

The best user intention understanding result was ob-
tained by combining the tendencies of all prosodic features
and the distance of pronunciation sequences; it achieved
84.62% classification accuracy. The ratio features reflected
information on both the direction and the degree of change.
As single normalized prosodic features, the ratio features
were effective. However, in a combined model (all nor-
malized prosodic features + distance feature), the degree of
change confused the classification user intention, because
the degree of change was relatively smaller than the dis-
tance; therefore, in the combined model, considering only
the tendency features was more effective than all other con-
figurations.

The most effective single feature was the normalized
Levenshtein distance between pronunciation sequences; it
achieved 80.16% classification accuracy, but it depended on

the accuracy of the ASR. ASR with a high error rate pro-
duced many erroneous words and caused a higher normal-
ized Levenshtein distance feature. Therefore, other features
are required that are independent of the accuracy of ASR.

4.3 Overall System Evaluation

We constructed our OS-EDC interface including every com-
ponent; target region detection, user intention understanding
and error correction recognition. We evaluated three inter-
faces; CTP, MWOP, and our OS-EDC interface. CTP and
MWOP, need commands to control the correction mode, so
we added some commands: ‘select’ and ‘correct’ for CTP,
and ‘correct’ for MWOP. For example, to correct a sentence
“I have and apple” to “I have an apple”, to correct one error,
the CTP interface needs two utterances, “select have and ap-
ple” for selection and “correct have an apple” for correction,
and the MWOP interface needs one utterance, “correct have
an apple”. For target region detection, we applied our target
region detection method.

For overall system evaluation, we gave 21 users the
task of making documents each consisting of 10 sentences
with 264 Korean syllables. The users were the same as
the users for data collection using the WOZ method, how-
ever, they had small experience about using the voice word
processor interface even that the interface is for WOZ data
collection. All the users had the three interfaces, and
were given usage guidelines which did not include prosodic
guidelines (such as “for correction, speak loudly”). The or-
der of using interfaces was randomized for each user. After
the users completed the task of making the documents, we
used a questionnaire to collect the users’ qualitative assess-
ments of the interfaces [27].
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4.3.1 Quantitative Evaluation

The effectiveness is represented by quantitative evaluation
(Table 4). We measured the average number of spoken syl-
lables and the average number of turns required to complete
a task. We also measured the average number of syllables
and average number of turns required to correct an error. In
both cases the totals included the numbers of command syl-
lables and command turns. We used paired t-tests to assess
the significance of differences noted.

Our OS-EDC interface reduced the average number
syllables per task compared to the CTP interface and the
MWOP interface: the differences were statistically signifi-
cant (p = 0.026 for the CTP interface, p = 0.024 for the
MWOP). Our OS-EDC interface also reduced the average
number of turns per task compared to the CTP interface and
the MWOP interface; the differences were statistically sig-
nificant (p = 0.026 for the CTP interface, p = 0.024 for the
MWOP interface). Compared to MWOP, our OS-EDC in-
terface improved the effectiveness by about 21.93% for the
average syllables number of per task and by about 22.30%
for the average number of turns per task.

For one error correction, our OS-EDC interface re-
duced the average number of syllables per error compared
to the CTP interface and to the MWOP interface: the differ-
ences were statistically significant (p = 0.022 for the CTP
interface, p = 0.009 for the MWOP interface). Our OS-EDC
interface also reduced the average number of turns per error
compared to the CTP interface and the MWOP interface:
the differences were statistically significant (p = 0.018 for
the CTP interface, p = 0.017 for the MWOP interface). For
one error correction, our interface also improved the effec-
tiveness by about 39.55% for syllables and by about 35.97%
for turns compared to the MWOP interface.

This result shows that our interface can work effec-
tively with 93.88% detection accuracy for analysis region
detection, 84.62% classification accuracy for user intention
understanding.

In case of a sentence with two or more erroneous
words, the OS-EDC interface is more efficient than other in-
terfaces. When the users used the OS-EDC interface, the
users tended to correct erroneous words one-by-one with
short utterances. Contrastively, when the users used the
other interfaces, the user tended to correct erroneous words
at once that means respeak the whole sentence with com-
mand, and it caused supplementary corrections because of
the arise of another erroneous word in recognition results of
the respeaking. However, OS-EDC interface uses prosodic
and pronunciation sequence features in the user intention

Table 4 Effectiveness of three correction interfaces.

Syllables Turns
Syllables Turns per error per error

CTP 390.18 22.78 35.74 3.62
MWOP 363.77 17.55 24.24 1.83
OS-EDC 320.01 14.35 17.37 1.34

understanding phase, so that the utterances which provide
so much insufficient information such as just one word for
correction are not classified well. In particular, as cases of
the correction of the word is a noun, users tend to respeak
just the word and duration per syllable of the utterance is
even shorter than target. That phenomenon appears to the
early time of conducting the task of making document and
is surely reduced when the user adapted to the OS-EDC in-
terface.

4.3.2 Qualitative Evaluation

We measured user convenience level and intuitiveness level
by using questionnaire survey on which the users scored
each item on a scale of 1 to 10 (Table 5). The convenience
level represents how users rate the convenience of use each
interface, and reflects some inconveniences, such as long
utterances for error corrections and false operations of the
interfaces. The intuitiveness level represents users’ assess-
ment of how easy each interface is to use.

The proposed interface received higher assessments for
both convenience and intuitiveness of use (Table 5). All dif-
ferences were statistically significant: p = 0.011 for conve-
nience level of the CTP interface, p = 0.019 for convenience
level of the MWOP interface, p = 0.027 for intuitiveness
level of the CTP interface, p = 0.009 for intuitiveness level
of the MWOP interface. Our method achieved scores of
8.64/10 for convenience level and 8.36/10 for intuitiveness
level and those scores are higher than the scores of the previ-
ous two methods. In convenience level, an interface that has
more effectiveness scores higher. In intuitiveness level, the
CTP interface scored higher than the MWOP interface be-
cause the CTP interface is a fully explicit correction method
for selection and correction using two commands, but the
MWOP interface operates selection implicitly and correc-
tion explicitly, so the MWOP interface can confuse users.
However, our OS-EDC interface is a fully implicit correc-
tion method and is also natural in that it follows the method
that humans use when correcting errors in a dictation task.

Both users who used the OS-EDC interface first and the
others rated higher the OS-EDC interface than the other in-
terfaces. But, one remarkable distinction between users who
used the OS-EDC interface first and the others is that the
users who used the OS-EDC interface first make mistakes
omitting commands when they used the CTP and MWOP
interfaces for experiment. However, the users using the CTP
or MWOP interfaces first did not use any commands during
using the OS-EDC interface. Additionally, they rated the
convenience level and the intuitiveness level of the OS-EDC
interface higher than the other interfaces and the score dif-
ference is more than the other users’ score difference. This

Table 5 Qualitative evaluation of three correction interfaces.

Convenience level Intuitiveness level
CTP 6.27 7.91
MWOP 8.33 7.02
OS-EDC 8.64 8.36
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phenomenon can be an evidence of convenience and intu-
itiveness of the OS-EDC interface.

5. Conclusion

We have proposed a One-Step Error Detection and Correc-
tion (OS-EDC) interface for a voice word processor. OS-
EDC includes target region detection, user intention under-
standing and error correction utterance recognition. We de-
tect the target region by using a pronunciation-sequence-
based method with a POS label n-gram-based region ex-
tension, and achieved 93.88% accuracy in full-region detec-
tion. We classify user intention using normalized prosodic
features and a normalized Levenshtein distance feature, and
achieved 82.91% accuracy. Furthermore, using all compo-
nents combined, we proved the effectiveness of our OS-
EDC interface by comparison to two previous methods
(CTP interface and MWOP interface).

The OS-EDC interface understands whether a user’s
new utterance is intended to be a correction or non-
correction. By understanding a user’s intention, we provide
a system that can automatically enter correction mode in re-
sponse to only the correction utterance of a replacement text.
Furthermore, the OS-EDC interface is humanlike, because
it replicates the human habit of correcting mistakes during
conversations. The mistakes include speaking mistakes and
understanding mistakes. With this method, when compos-
ing a document, users need not remember any voice com-
mands for entering correction mode and may simply speak
sentences that they want to type. Therefore, the efficiency
of the process may be increased. In addition, the developers
of a voice word processor need not design any voice com-
mands for entering correction mode.
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