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Objective: Recent studies have revealed a link between Toll-like receptor (TLR) signaling and the adipose

tissue inflammation associated with obesity. Although TLR9 is known to play an important role in inflam-

mation and innate immunity, its role in mediating adipose tissue inflammation has not yet been investi-

gated. Thus, the objective of this study was to determine the role of TLR9 in regulating immune cells in

visceral adipose tissue and maintaining the metabolic homeostasis.

Methods: Wild-type and TLR9-deficient mice were fed with a high-fat diet, and the body weight gain,

glucose tolerance, insulin sensitivity, and adipose tissue inflammation were examined.

Results: TLR9-deficient mice gained significantly more weight and body fat under a high-fat diet than

wild-type mice and exhibited more severe glucose intolerance and insulin resistance. We also found a

dramatic increase of M1 macrophages as well as TH1 cells in the adipose tissue of TLR9-deficient mice

compared to wild-type mice. Furthermore, the levels of various proinflammatory cytokines and chemo-

kines were higher in TLR9-deficient mice.

Conclusions: TLR9 signaling is involved in regulating adipose tissue inflammation and controlling obesity

and the metabolic syndrome.
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Introduction
Obesity and obesity-related metabolic diseases are associated with

excessive infiltration of immune cells and chronic inflammation in

multiple metabolic tissues such as visceral adipose tissue (VAT),

liver, and skeletal muscles (1). The concomitant increase in circulat-

ing cytokines, including IL-1b, TNF-a, and IL-6, leads to insulin

resistance and disruption of metabolic homeostasis.

In obese mice, macrophages highly infiltrate into the VAT and

secrete proinflammatory cytokines. In addition to the increase in

numbers of macrophages, obesity induces the conversion of M2 (or

alternatively activated) macrophages into M1 (or classically acti-

vated) macrophages, further promoting the tissue inflammation

(2,3). T cells also accumulate in the VAT of obese mice and, in

some cases, they seem to arrive even before the recruitment of mac-

rophages (4). Recent studies show that other immune cells such as

B cells, mast cells, eosinophils, neutrophils, and NKT cells also con-

tribute to the insulin resistance and metabolic diseases in obese mice

via low-grade chronic inflammation (5-10).

Mammalian Toll-like receptors (TLRs) belong to a major pattern

recognition receptor family, and their activation typically leads to

the production of proinflammatory cytokines and chemokines,

thereby triggering innate immune responses (11). The role of TLRs

is not limited to the host defense against infection, and they are also

implicated in the regulation of metabolic health. For example,

TLR5-deficient mice exhibit spontaneous obesity and metabolic dis-

eases (12). On the other hand, mice lacking TLR2 or TLR4 are pro-

tected from diet-induced obesity and insulin resistance (13,14).

However, little is known about the role of TLR9 signaling in the

regulation of metabolic function and adipose tissue inflammation.

TLR9 is originally identified as a receptor for unmethylated bacte-

rial CpG DNA and synthetic CpG-containing oligodeoxynucleotides

(15). Upon activation, it promotes secretion of proinflammatory

cytokines and chemokines, as well as type I interferons, in a

MyD88-dependent manner, and plays a major role in defense against

many bacterial and viral infections (16-18). TLR9 can also be stimu-

lated by mammalian DNA and is implicated in pathogenesis of sev-

eral autoimmune diseases, such as systemic erythematosus lupus and

psoriasis (19,20). In addition, TLR9 seems to mediate the beneficial
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effect of certain probiotics, and recently the anti-inflammatory func-

tion of TLR9 started to be more appreciated (21,22). In this study,

we investigated the role of TLR9 in induction of obesity and adi-

pose tissue inflammation. We show that mice lacking TLR9, com-

pared to wild-type (WT) mice, exhibit excessive weight gain with

development of obesity-associated glucose intolerance and insulin

resistance under a high-fat diet (HFD) condition. We also show that

M1 macrophages and TH1 cells accumulate significantly more in the

VAT of TLR9-deficient mice, resulting in the increased levels of

proinflammatory cytokines and chemokines.

Taken together, our findings suggest that TLR9 signaling is involved

in regulating adipose tissue inflammation and protecting against obe-

sity and the metabolic syndrome in mice.

Methods
Mice
WT (C57BL/6) and TLR9-deficient (Tlr92/2; B6.129P2-Tlr9tmAki)

mice were purchased from Oriental BioService, and housed in a spe-

cific pathogen-free facility at Pohang University of Science and

Technology. TLR9-deficient mice were backcrossed more than 15

generations with C57BL/6 mice. All animal experiments were per-

formed under protocols approved by the Ethics Review Committee

for Animal Experimentation of Pohang University of Science and

Technology. Only age-matched male mice were used for each

experiment.

Diet-induced obesity and metabolic studies
For obesity induction, mice were fed with HFD (60 kcal% fat,

Research Diets) starting at 6 weeks of age and maintained for 8-10

additional weeks. Body weight was measured every week. Fasting

blood glucose and insulin concentrations were measured with a gluc-

ometer (Accu-Chek Performa kit, Roche) and by insulin ELISA

(Mercodia), respectively. For glucose tolerance tests (GTT), glucose

(1 g/kg body weight) was injected i.p., after a 16 h fast and blood

glucose levels were measured at indicated time points. For insulin

tolerance tests (ITT), human insulin (0.75 U/kg body weight) was

administered by i.p., after a 4 h fast and blood glucose levels were

measured at indicated time points.

Isolation of adipocytes and VAT-associated
immune cells
Adipocytes were isolated from epididymal adipose tissues as previ-

ously described (3). For isolation of fat-associated leukocyte and

mononuclear cells, epididymal adipose tissues without contaminating

lymph nodes were minced, and digested in the enzyme media

(RPMI 1640 media containing 400 U/ml of collagenase D, 10 lg/ml

DNase I, 3% FCS, 20 mM HEPES, 100 U/ml penicillin, 100 lg/ml

streptomycin, 1 mM sodium pyruvate, and 1 mM NEAA) for 45

min at 378C. EDTA (final concentration of 10 mM) was added to

the cell suspension, and the cells were incubated for an additional 5

min at 378C. After filtering through a 40 lm cell strainer, the red

blood cells were removed by lysis. For enrichment of lymphocytes,

the cells were spun on a 40/75% Percoll gradient (GE Healthcare

Life Sciences). For qRT-PCR analysis, macrophages (F4/

801CD11b1MHCII1), T cells (SSCloTCRb1) and eosinophils

(MHCII-Siglec-F1) from stromal vascular fraction (SVF) were fur-

ther purified using MoFlo Astrios cell sorter (Beckman Coulter)

Antibodies and reagents
All fluorescence-conjugated antibodies used for flow cytometric

analyses were purchased from BD Biosciences, eBioscience, or Biol-

egend. T cells were labeled with antibodies against TCRb (H57-

597), CD4 (RM4-5), and macrophages were labeled with MHCII

(M5/114/15/2), F4/80 (BM8), CD11b (M1/70), CD11c (HL3), and

CD206 (c068c2) antibodies after FcR blocking with anti-CD16/

CD32 antibodies (2.4G2). Eosinophils were stained with siglec-F

(E50-2440) antibody. For Treg cell labeling, cells were stained with

TCRb, CD4, and Foxp3 (FJK-16s) antibodies using the Foxp3 stain-

ing buffer solution (eBioscience). For T cell intracellular cytokine

staining, T cells were surface-labeled with TCRb and CD4 antibody

and then stained with IFN-c (XMG1.2), IL13 (eBio13A), and IL-

17A (JES5-16E3) antibodies after permeabilization with the Cytofix/

Cytoperm Kit (BD Biosciences). The stained cells were analyzed

using LSRFortessa (BD Biosciences) and FlowJo software (Tree

Star, San Carlos, CA).

qPCR
Total RNA was isolated from adipocytes, VAT-associated immune

cells or whole-liver tissue with the TRIzol Reagent (Invitrogen) and

Figure 1 TLR9 deficiency accelerates HFD-induced obesity. WT and TLR9-deficient (Tlr92/2) mice were monitored for 10 weeks while being
fed a HFD. (A) Body weight gain (n 5 15 mice per group). (B) Epididymal fat mass. Scale bar: 1 cm. (C) Food intake. Results are representa-
tive of two separate analyses. Means 6 SEM are shown. *P<0.05, **P< 0.01, t test or two-way ANOVA.
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subjected to reverse transcription with Superscript II (Invitrogen)

and oligo-dT primers. cDNA was amplified using Applied Biosys-

tems ViiA7 using SYBR green (Takara) and specific primers. The

results were analyzed by the DDCt (change in cycle threshold)

method and normalized to HPRT expression.

Oil-red O staining
The liver was fixed in paraformaldehyde, embedded in Tissue-Tek

O.C.T compound (SAKURA), and the frozen sections were stained

with Oil-red O (Sigma Aldrich).

Statistical analyses
Results are presented as the mean 6 SEM. Statistical significance

was evaluated with an unpaired two-tailed Student’s t test or two-

way ANOVA. Significance was set at P� 0.05.

Results
TLR9 is highly expressed in macrophages and eosinophils in adi-

pose tissues of mice (Supporting Information Figure S1A). TLR9

mRNA is also detected in adipocytes, albeit at a much lower level.

To examine the role of TLR9 during the development of obesity, we

fed 6-week-old WT and TLR9-deficient (Tlr92/2) mice with HFD

for 10 weeks and measured body weight weekly. We found a signif-

icant difference in body weight changes with TLR9-deficient mice

having approximately 20% higher body weight than WT mice after

10 weeks of HFD (Figure 1A). In addition, the epididymal fat mass

was higher in TRL9-deficient mice (Figure 1B). Food consumption

was not significantly different between the groups (Figure 1C).

Compared to HFD-fed mice, mice fed with normal chow diet

(NCD) did not show significant differences in weight gain (Support-

ing Information Figure S1B). Thus, TLR9 signaling regulates the

development of diet-induced obesity.

To test if TLR9 deficiency also affects metabolic processes, we

measured the fasting blood glucose levels of HFD-fed mice and

found that it was significantly increased in mice lacking TLR9 com-

pared to WT mice (Figure 2A). Moreover, TLR9-deficient mice

exhibited an impaired ability to restore blood glucose to a baseline

level in the GTT, a key indicator of altered metabolism (Figure 2B).

Similarly, HFD-fed TLR9-deficient mice showed dramatically ele-

vated blood insulin concentration compared with WT mice and

decreased insulin sensitivity in the ITT, indicating more severe insu-

lin resistance (Figure 2C,D). In contrast, mice fed with NCD showed

no significant differences in serum glucose concentration, glucose

tolerance and insulin sensitivity (Supporting Information Figures

S2C and S2D).

Next, we examined the adipocyte function of TLR9-deficient obese

mice. As shown in Figure 2E, TLR9 deficiency resulted in the sig-

nificant decrease of adiponectin expression in adipose tissue. Adipo-

nectin is a well-known adipokine that sensitizes insulin signaling,

Figure 2 TLR9-deficient mice exhibit more severe metabolic disorders. After 10
weeks on a HFD, glucose homeostasis, adipocyte function, and fatty liver develop-
ment were analyzed in WT and TLR9-deficient mice on a HFD. (A) Blood glucose
level for 16 h fast. (B) Glucose tolerance test. Mice were fasted for 16 h and were
injected i.p. with glucose (1 g/kg body weight). (C) Blood insulin level for 16 h fast.
(D) Insulin tolerance test. Mice were fasted for 4 h and were injected i.p. with insu-
lin (0.75 U/kg body weight) (n 5 6). mRNA expression level of (E) adipokines and
(F) adipogenic genes in epididymal fat pads. mRNA levels were normalized against
HPRT mRNA, and the relative expression levels are shown (n 5 4-5). (G) Oil-red
O staining of the liver section. Scale bar: 200 lm. (H) mRNA expression level of
hepatic lipogenic genes. Original magnification, 103. Means 6 SEM are shown.
*P< 0.05, **P< 0.01, t test or two-way ANOVA.
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and its serum level is reduced in adults with obesity and patients

with type 2 diabetes (23). Expression of adipogenic markers such as

GLUT4 and CCAT/enhancer binding protein alpha (C/EBPa) in the

adipose tissue was also significantly lower in TLR9-deficient mice

compared to WT mice, suggesting that lack of TLR9 leads to more

pronounced adipocyte dysfunction (Figure 2F). We also examined

whether the TLR9 deficiency influences HFD-induced fatty liver

development. HFD-induced lipid accumulation was dramatically

enhanced in the liver of TLR9-deficient mice (Figure 2G). In addi-

tion, TLR9 deficiency significantly increased expression of the

hepatic genes involved in lipogenesis, including fatty acid binding

protein 4 (aP2), lipoprotein lipase (LPL), and PPARc2 (Figure 2H).

Collectively, these results imply that loss of TLR9 signaling ampli-

fies the HFD-induced metabolic disorders.

The VAT plays an important role in controlling the systemic metab-

olism (1). In the obese state, macrophages infiltrate into the VAT

and produce proinflammatory cytokines that decrease the insulin

Figure 3 TLR9 deficiency increases macrophage accumulation in the VAT. Flow cytometric analysis of the SVF
from the epididymal fat pads of WT and TLR9-deficient mice on a HFD. (A) Total SVF cell counts. (B) Proportion
and number of macrophages in the VAT. (C) Proportion and number of M1 (CD11c1) and M2 (CD2061) macro-
phages in the VAT. Mean values and representative dot plots are shown. **P< 0.01, ***P< 0.001, t test.
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sensitivity (2). Additionally, obesity induces the phenotypic shift of

VAT macrophages from the M2-polarized state to the proinflamma-

tory M1 state (3). To analyze if TLR9 signaling affects VAT macro-

phages, we isolated SVF cells of VAT pads excised from obesity-

induced WT and TLR9-deficient mice and analyzed the cells by

flow cytometry. The total SVF cell count was higher in TLR9-

deficient mice than WT mice (Figure 3A). Moreover, VAT macro-

phages (MHCII1F4/801) were more enriched in TLR9-deficient

mice (Figure 3B) (24). To assess the phenotypic polarization of

macrophages, we measured the surface expression of CD11c and

CD206, a marker of M1 and M2 macrophages, respectively. In a

previous report, CD206hi macrophages were shown to play a domi-

nant anti-inflammatory role through their expression of IL-10 (25),

whereas CD11c1 macrophages exert proinflammatory functions (3).

We found that both the percentage and the number of proinflamma-

tory M1 macrophages were higher in TLR9-deficient mice, whereas

the proportion of anti-inflammatory M2 macrophages was lower in

TLR9-deficient mice than in WT mice (Figure 3B). The numbers

of M2 macrophages were similar in WT and TLR9-deficient mice,

due to the higher total number of macrophages in TLR9-deficient

mice.

Macrophage polarization can be influenced by TH cells through

their secretion of various cytokines (26). Therefore, we also ana-

lyzed CD41 T cells in the VAT and found that the percentage and

the number of CD41 T cells were higher in TLR9-deficient mice

(Figure 4A). We further examined CD41 T cell subsets, namely

regulatory T cells (CD251Foxp31), TH1 (IFN-c1), TH2 (IL-131),

and TH17 (IL-17A1) cells. Regulatory T cells (Treg) in the VAT

are shown to exert antiobesity effects (27). Also, IL-10 secreted by

Treg cells can alleviate the insulin resistance by inducing M2 mac-

rophages (26). We found that the frequency of Treg cells was

lower in TLR9-deficient mice. However, the numbers were similar

in both WT and TLR9-deficient mice, because the total number

of CD41 T cells was higher in the VAT of TLR9-deficient mice

(Figure 4B).

VAT TH1 cells can activate M1 macrophages via secretion of cyto-

kines such as IFN-c which is linked to metabolic syndrome (28).

We found higher numbers of TH1 cells in the VAT from obesity-

induced TLR9-deficient mice than obesity-induced WT mice, which

likely contribute to the proinflammatory environment of the VAT

(Figure 5). In adoptive transfer experiments, TH2 cells were shown

to sustain VAT M2 macrophages and enhance insulin sensitivity

(25). In comparison with WT mice, TLR9-deficent mice have a

lower percentage of TH2 cells in the VAT, but show similar overall

numbers. We also found the presence of TH17 cells in the VAT of

both WT and TLR9-deficient mice. There was no significant altera-

tion of TH17 cells in TLR9-deficient mice. In summary, these results

demonstrate that the lack of TLR9 signaling potentiates the increase

of proinflammatory cells in the VAT of obese mice, which likely

leads to a chronic inflammation of the VAT.

Figure 4 TLR9 deficiency increases CD4 T cell accumulation in the VAT. Flow cytometric analysis of the SVF from the
epididymal fat pads of WT and TLR9-deficient mice on a HFD. (A) Proportion and cell numbers of CD41 T cells in the
VAT. (B) Proportion and cell number of Treg (Foxp31CD251) cells in the VAT. Mean values and representative dot plots
are shown. *P< 0.05, **P< 0.01, ***P< 0.001, t test.
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To determine whether the VAT of TLR9-deficient obese mice suffers

more severe inflammation, we measured cytokine mRNA levels in

the VAT extracts. As shown in Figure 6A, TLR9 deficiency indeed

caused a significantly higher expression of various proinflammatory

cytokines (TNF-a, IL-6, and IFN-c). In contrast, the levels of TH2

cytokines, IL-4 and IL-13, were similar in both WT and TLR9-

deficient mice. The lack of TLR9 also resulted in the increased

expression of multiple chemokines, such as MCP-1, MIP-1a, and

RANTES (Figure 6B). These findings clearly support a role of TLR9

in regulating inflammatory responses in the VAT of obese mice.

Discussion
Obesity is associated with low-grade inflammation caused by abnor-

mal inflammatory cytokine production in adipose tissue (29).

Although many studies have shown an important role of adipose tis-

sue inflammation in metabolic syndrome (30), the underlying mech-

anisms are not fully understood.

TLRs, which become upregulated in affected tissues of most inflam-

matory disorders, can mediate crosstalk between the immune system

and body metabolism (31). Recent findings have shed light on the

role of several TLRs as important regulators of metabolic disorders

such as obesity and insulin resistance (32). Especially, in the inflam-

matory environment of the VAT in obese mice, activation of TLRs

by a variety of endogenous and exogenous ligands may contribute

to adipocyte dysfunction and further promote insulin resistance (33).

For example, it was reported that TLR4, the receptor for bacterial

lipopolysaccharides, can sense free fatty acids and mediate insulin

resistance in the adipose tissue (34). Despite the increased TLR9

expression in the adipose tissue of obese mice, however, the role of

TLR9 in maintaining metabolic homeostasis has remained

unknown (35).

In this study, we found that TLR9 deficiency accelerates HFD-

induced weight gain, insulin resistance, and visceral fat accumula-

tion. In addition, severe adipocyte dysfunction and fatty liver devel-

opment were observed in HFD-fed TLR9-deficient mice.

Figure 5 TLR9 deficiency results in increase of TH1 cells in the VAT. Flow cytometric analysis of the SVF from the epi-
didymal fat pads of WT and TLR9-deficient mice on a HFD. Isolated VAT T cells were stimulated with PMA and iono-
mycin in the presence of monensin for 4 h before intracellular cytokine staining. (A) Analysis of IFN-c, IL-13, and IL-
17A expressing CD41 T cells. (B) Proportion and cell number of TH1, TH2, and TH17 cells in the VAT. Mean values
and representative dot plots are shown. *P< 0.05, t test.
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Furthermore, infiltration of immune cells, including macrophages

and TH1 cells, into the VAT was dramatically increased in TLR9-

deficient mice. The crosstalk between VAT-infiltrating T cells and

macrophages is important for altering the inflammatory phenotype

of the macrophages and for regulating adipose tissue inflammation

(4,36). Consistent with the increase of immune cell infiltration

within the adipose tissue of TLR9-deficient mice, various proinflam-

matory cytokines, and chemokines were significantly increased in

TLR9-deficient mice. Thus, our study implicates that TLR9 is

required for regulating adipose tissue inflammation and obesity-

related metabolic disorders.

How does TLR9 limit HFD-induced adipose tissue inflammation

and metabolic syndrome? A majority of evidence suggests that the

main role of TLR9 signaling in the innate immune responses is to

exert proinflammatory actions (31,37). However, the anti-

inflammatory function of TLR9 has recently been implicated in sev-

eral inflammatory diseases including colitis and pneumonia (17,38).

Moreover, TLR9-mediated signaling was linked to the anti-

inflammatory cytokine production by macrophages. Stimulation of

macrophages with CpG DNA resulted in IL-10 production through a

TLR9-MyD88 dependent pathway (39). Further study will be

required to determine if TLR9 signaling indeed directly suppresses

the adipose tissue inflammation by exerting anti-inflammatory

responses and controls obesity development.

Similar to our findings with TLR9-deficient mice, mice lacking

TLR5 exhibited insulin resistance and obese phenotype and these

defects were attributed to the altered intestinal microbiota commu-

nity in TLR5-deficient mice (12). However, a recent study showed

that TLR9 deficiency did not alter the composition of gut micro-

biota, suggesting that the exacerbated metabolic syndrome seen in

TLR9-deficient mice is unlikely to be explained by changes in intes-

tinal microbiota (40).

In conclusion, we found that TLR9 deficiency increases HFD-

induced adiposity, VAT inflammatory responses, and insulin resist-

ance in mice. Therefore, TLR9 is likely to play a key role in regu-

lating adipose tissue inflammation and obesity-related metabolic dis-

orders, although additional investigation is required to elucidate the

underlying mechanisms. Probing the site of action and cell type-

specific mechanism of TLR9-mediated signaling may provide fur-

ther insight into the role of TLR9 in maintaining metabolic homeo-

stasis and preventing adipose tissue inflammation. Our study also

suggests that manipulation of TLR9 signaling using specific agonists

might provide a useful therapeutic approach for treatment of

inflammation-related metabolic syndrome.O
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