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Flexible, highly efficient all-polymer solar cells
Taesu Kim1,2, Jae-Han Kim2,3, Tae Eui Kang1,2, Changyeon Lee1,2, Hyunbum Kang1,2, Minkwan Shin4,

Cheng Wang5, Biwu Ma6, Unyong Jeong4, Taek-Soo Kim2,3 & Bumjoon J. Kim1,2

All-polymer solar cells have shown great potential as flexible and portable power generators.

These devices should offer good mechanical endurance with high power-conversion

efficiency for viability in commercial applications. In this work, we develop highly efficient and

mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor

and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion

efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance

than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM)

as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit

dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with

60- and 470-fold improvements in elongation at break and toughness, respectively. The

superior mechanical properties of all-polymer solar cells afford greater tolerance to severe

deformations than conventional polymer-fullerene solar cells, making them much better

candidates for applications in flexible and portable devices.
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T
he emergence of flexible and wearable devices, such as
electronic textiles, smart watches and patchable sensors,
has stimulated research on alternative power generators for

operating such devices. One of the basic requirements for these
devices is that the integration of individual electronic components
must retain flexibility and portability to function in new
operational environments1–4. For this consideration, organic
solar cells (OSCs) are currently viewed as promising power
generation technologies that can be integrated into these devices
because they are lightweight, semitransparent and flexible5,6. To
date, most highly efficient OSCs have been based on polymer-
fullerene blends, in which fullerenes such as phenyl-C61-butyric
acid methyl ester (PCBM) act as the electron acceptor. However,
fullerenes are not ideal acceptor materials due to many intrinsic
issues, such as weak light absorption and un-optimized energy
levels, limiting the design adaptability of the electron donor
pair. Moreover, fullerene-based OSCs have low flexibility
and stretchability due to the brittle crystalline features of the
fullerenes7,8. To resolve these drawbacks, a number of non-
fullerene acceptors, including small molecules, nanoparticles and
polymers, have been developed to replace fullerenes9–12.

All-polymer solar cells (all-PSCs), consisting of polymer-donor
and polymer-acceptor materials, possess many advantages over
polymer-fullerene solar cells, including tunable chemical and
electronic properties as well as enhanced stabilities13–21. In recent
years, many efforts have focused on developing optimal polymer-
donor and polymer-acceptor combinations with well-controlled
bulk-heterojunction (BHJ) morphologies21–29. Among the non-
fullerene acceptors, naphthalene diimide (NDI)-based copoly-
mers have been the most successful polymer acceptors with high
electron affinities and high electron mobilities, which are a result
of their highly extended p-conjugated structure and strong p–p
intermolecular interaction30–35. The power-conversion effi-
ciencies (PCEs) of all-PSCs have improved greatly to 5–6%, and
there is still great potential for further enhancement26–27,36–38,
provided that simultaneous adjustment of polymer-donor and
polymer-acceptor energy levels can improve their light harvesting
and increase the open-circuit voltage (VOC). Compared with
conventional polymer-fullerene solar cells, all-PSCs can
potentially exhibit much better mechanical strength and
stability, because polymer acceptors are not only intrinsically
more ductile than fullerenes but also are entangled with other
polymers within the acceptor domain and at the interface39–41. In
consideration of the application of PSCs in flexible devices, the
mechanical properties of the all-PSCs should be investigated.
However, to our knowledge, there is no report regarding this
important topic.

Herein, we demonstrate that all-PSCs are better candidates
than fullerene-based solar cells for applications in flexible and
portable electronics. Highly efficient and mechanically robust

all-PSCs have been fabricated by using poly[4,8-bis(5-(2-ethylhexyl)
thiophen-2-yl)benzo[1,2-b:4,5-b0]dithiophene-alt-1,3-bis(thiophen-
2-yl)-5-(2-hexyldecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione]
(PBDTTTPD) as the electron donor42–44 and poly[[N,N0-bis
(2-hexyldecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-
5,50-thiophene] (P(NDI2HD-T)) as the electron acceptor. The all-
PSCs based on this donor/acceptor pair of PBDTTTPD and
P(NDI2HD-T) exhibited a PCE of 6.64%, which is higher than that
of PBDTTTPD:PCBM BHJ PSCs (PCE¼ 6.12%). The better
performance of the all-PSCs was attributed to the high VOC of
1.06 V and the optimized BHJ active layers of polymer donor and
acceptor with favourable interfacial interactions. We have also
studied the mechanical properties of the all-PSCs and found that,
compared with fullerene-based blend films, all-polymer blend films
offer superior flexibility, stretching and bending properties.

Results
Photovoltaic performances. Figure 1a shows the molecular
structures and energy levels of PBDTTTPD, P(NDI2HD-T) and
PCBM. The PBDTTTPD had number-average molecular weight
(Mn) value of 22 kg mol� 1 and optical bandgap of 2.02 eV (see
Supplementary Table 1), absorbing light in the wavelength of
400–650 nm (Fig. 1b). The P(NDI2HD-T) was also synthesized
with Mn value of 48 kg mol� 1, after considering that (1) the
P(NDI2HD-T) had a higher lowest unoccupied molecular orbital
energy level than that of PCBM, and (2) it had high electron
mobility26. To explore the potential of these polymers in a
photovoltaic system, we fabricated all-PSCs using a blend of
PBDTTTPD and P(NDI2HD-T), and compared their perfor-
mance with conventional polymer-fullerene solar cells (PCBM-
PSCs) based on a blend of PBDTTTPD and PCBM. Both PSCs
were fabricated with the same device structure of ITO/poly-(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/
blend layer/LiF/Al, although the processing conditions for the
optimized PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T)
blend layers were slightly different. For the PBDTTTPD:PCBM
system, we used chloroform and 1,8-diiodooctane (DIO, 3 vol%)
as the processing solvents, and a polymer-donor concentration of
10 mg ml� 1 with the donor:acceptor ratio of 1:1.5 (w/w). For the
PBDTTTPD:P(NDI2HD-T) system, chloroform with 1 vol% of
DIO was used to process a 12.5 mg ml� 1 blend solution (1.3:1,
w/w). The optimized film thicknesses of the PBDTTTPD:PCBM
and PBDTTTPD:P(NDI2HD-T) blend layers were B200 and
130 nm, respectively. Details about the device optimization can be
found in Supplementary Tables 2, 3 and 4. Figure 2 shows the
current density versus voltage (J–V) curves and external quantum
efficiency (EQE) spectra of the optimized PSCs, and Table 1
summarizes the corresponding photovoltaic characteristics. The
best PCE of the PCBM-PSCs was 6.12% (VOC¼ 0.96 V;

P(NDI2HD-T) 

–5.64 eV

–3.79 eV

–5.49 eV

–3.47 eV
PBDTTTPD

–5.55 eV

–3.85 eV

PCBM
a b

300 400 500 600 700 800
0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

Wavelength (nm)

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 (

cm
–1

) 

PBDTTTPD
PCBM
P(NDI2HD-T)

C2H5

C6H13

C8H17

C8H17
C4H9

n

OO

O

O

O N OCH3

C8H17

C2H5

C4H9

C6H13

S

S

S

S

S

S
n

O

O N

N

Figure 1 | Polymer information. (a) Chemical structures, energy levels, and (b) ultraviolet-visible absorption spectra of PBDTTTPD (black line), PCBM (red

line) and P(NDI2HD-T) (blue line).
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JSC¼ 11.17 mA cm� 2; fill factor (FF)¼ 0.57). This PCE value was
consistent with or even higher than the PCE values of 4–6%
reported in the literature for the PBDTTTPD:PCBM
systems42–44. In contrast, when the P(NDI2HD-T) polymer was
used as the electron acceptor, the best PCE increased significantly
to 6.64% with VOC of 1.06 V, which represents one of the highest
PCE and VOC values reported to date for all-PSCs. The higher
device performance of all-PSCs was mainly attributed to the
enhanced VOC value because of the higher-lying lowest
unoccupied molecular orbital energy level of P(NDI2HD-T)
than PCBM (Fig. 1a). We also measured the EQE spectra for the
optimized PCBM-PSCs and all-PSCs. The JSC values were well
matched (within 3% error) with the integrated JSC values obtained
from the EQE spectra (Fig. 2b and Table 1). The EQE values of
all-PSCs were higher than those of PCBM-PSC in the low-energy
region of 500–700 nm, but lower in the high-energy region of
350–500 nm. This was not surprising if we considered the
difference of the absorption for P(NDI2HD-T) and PCBM, that
is, P(NDI2HD-T) having higher absorbance in the low-energy
region but lower absorbance in the high-energy region compared
with PCBM (Supplementary Fig. 1). Overall, comparable values
of JSC were obtained for both PSCs.

Polymer packing structure and blend morphology. To gain
a deeper insight into the photovoltaic operation of the devices, we
investigated the morphological characteristics of PBDTTTPD:
PCBM and PBDTTTPD:P(NDI2HD-T) blends. First, we exam-
ined the polymer packing structures of PBDTTTPD:PCBM and
PBDTTTPD:P(NDI2HD-T) blends via grazing incidence X-ray
scattering (GIXS) measurements (Supplementary Fig. 2).
Supplementary Fig. 2a shows that the PBDTTTPD and
P(NDI2HD-T) neat films had (100) scattering peaks in the in-
plane direction (qxy) with lamellar domain spacings of 24.1 Å
(qin¼ 0.26 Å� 1) and 22.5 Å (qin¼ 0.28 Å� 1) and these scattering

features were well preserved in the blend films (see Supple-
mentary Fig. 2b). Prominent (010) peaks of PBDTTTPD:PCBM
and PBDTTTPD:P(NDI2HD-T) blends, corresponding to p–p
stacking, were shown in the out-of-plane direction, indicating
that both blends strongly preferred a face-on orientation relative
to the substrate. The face-on stacked polymer blends should be
beneficial for charge transport through the active layer to the
electrodes18,45,46. Second, the blend morphologies of the
PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T) films were
characterized by atomic force microscopy (AFM) and resonant
soft X-ray scattering (RSoXS) measurements (Supplementary
Fig. 3). The AFM images showed that the PBDTTTPD:PCBM
blend had coarser domains with a much larger surface roughness
(root-mean-square value of 6.4 nm) than that of the PBDTTTPD:
P(NDI2HD-T) blend (3.1 nm). In addition, the RSoXS measure-
ments showed that the scattering peak of the PBDTTTPD:
P(NDI2HD-T) film had larger q value (0.0097 Å� 1) with much
weaker intensity compared with that of PBDTTTPD:PCBM blend
film (q¼ 0.0036 and 0.0083 Å� 1), suggesting that PBDTTTPD:
P(NDI2HD-T) blends possessed smaller domain size and much
better intermixing26,47–49. The trend of RSoXS measurements was
consistent with the results of the AFM measurements. The well-
intermixed BHJ morphologies with smaller phase-separated
domains for the PBDTTTPD:P(NDI2HD-T) blend could be
partly attributed to the relatively low value of the interfacial
tension (g) between the polymer donor and the polymer acceptor,
which was estimated by the contact angle measurements
(Supplementary Fig. 4 and Supplementary Table 5)50,51.

Space charge limited current charge mobility. We have also
evaluated the hole mobility (mh) and electron mobility (me) of the
PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T) blends by
using the space charge limited current measurements (Table 1
and Supplementary Fig. 5). The mh values of the PCBM-based and
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Figure 2 | J–V and EQE characteristics for the PCBM-PSC and the all-PSC. (a) J–V curves of normal-type devices, PBDTTTPD:PCBM (black line),

PBDTTTPD:P(NDI2HD-T) (red line) under AM 1.5 G-simulated solar illumination (100 mWcm� 2); (b) EQE characteristics of the PBDTTTPD:PCBM (black

line) and PBDTTTPD:P(NDI2HD-T) (red line).

Table 1 | Photovoltaic characteristics and hole and electron mobility values of PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T)
systems.

Device type VOC (V) JSC (mA cm� 2) FF PCEmax*,

(PCEave)w (%)
JSC (EQE)z

(mA cm� 2)
lh

(cm2 V� 1 s� 1)
le (cm2 V� 1 s� 1) lh/le

PCBM-PSCs 0.96 (0.959±0.003) 11.17 (11.208±0.057) 0.57 (0.565±0.007) 6.12 (6.076±0.045) 10.89 2.52� 10� 5 6.40� 10� 5 0.4
All-PSCs 1.06 (1.062±0.001) 11.22 (11.243±0.028) 0.56 (0.553±0.006) 6.64 (6.601±0.058) 10.96 2.84� 10� 5 1.55� 10� 5 1.8

*Photovoltaic characteristics obtained under AM 1.5 G-simulated solar illumination (100 mWcm� 2).
wThe average values were obtained from at least 12 devices.
zIntegrated values obtained from the EQE spectra.
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the all-polymer-based blends were almost same, that is, 2.5� 10–5

and 2.8� 10–5 cm2 V� 1 s� 1, respectively. The mh value of the
PBDTTTPD:PCBM film was consistent with that reported pre-
viously42. Both of the blends had me values with the same order of
magnitude, that is, 10–5 cm2 V� 1 s� 1, with the me value of the
PBDTTTPD:PCBM being higher. A mh/me value of 1.8 was
obtained for the PBDTTTPD:P(NDI2HD-T) film, suggesting
greatly more balanced hole and electron transports than those of
other high-performance all-PSC systems17,21. Overall, the all-PSC
system possessed desired features of polymer packing structure,
blend morphology, and electrical properties, to achieve high
performance, which were indeed better than or comparable to
those of the fullerene-based PSC system.

Mechanical properties. The excellent mechanical stability of all-
PSCs represents another major merit for their potential applica-
tions in the portable and outdoor devices52–54. The sharp and
weak interfaces between the polymer/fullerene junctions of the
fullerene PSCs result in low cohesion and poor ductility in the
BHJ active layer, and consequently mechanical fragility of the
entire device7,54–57. In addition, the fullerenes in the blend film
have strong tendency to crystallize, making the film even stiffer
and more brittle with higher tensile moduli and lower cohesive
energy with polymer donors8. Compared with PCBM-PSCs, all-
PSCs are expected to have much better mechanical properties
owing to (i) the polymer acceptor’s greater intrinsic flexibility
than fullerenes, and (ii) the strengthened donor/acceptor
interfaces by the entanglements between the polymer chains39,58.

To illustrate the difference of mechanical properties between
PCBM-PSCs and all-PSCs, we first measured the tensile
characteristics of PBDTTTPD:PCBM and PBDTTTPD:
P(NDI2HD-T) blend films to obtain a quantitative comparison
of the mechanical resilience of the two films (Fig. 3). We
conducted a ‘pseudo free-standing tensile test’ (Supplementary
Fig. 6), in which the PBDTTTPD:PCBM and PBDTTTPD:
P(NDI2HD-T) thin films without any substrate were floated on
the water surface without any significant damage to or wrinkling

of the specimens56,59. Therefore, the intrinsic mechanical
properties of the films, including tensile modulus and
elongation at break, were directly measured without any
substrate effects, complex calculations or assumptions.
Figure 3a shows the stress–strain curves of the PBDTTTPD:
PCBM and PBDTTTPD:P(NDI2HD-T) blend films. The elastic
modulus and the elongation at break of the PBDTTTPD:PCBM
(1:1.5 w/w) blend film were measured to be 1.76 GPa and 0.12%,
respectively. In addition to the optimized device condition of
PBDTTTPD:PCBM (1:1.5 w/w), we also performed a tensile test
for the PBDTTTPD:PCBM blend with different blend ratio (1:0.5
w/w) and obtained a similar tensile modulus of 0.80 GPa and an
elongation at break of 0.30%. The observed brittleness decreased
as the PCBM content was lowered, which is consistent with what
was previously reported and suggested that PCBM is the
performance limiting component7,60. In contrast, and surpris-
ingly, the tensile modulus of the PBDTTTPD:P(NDI2HD-T)
blend film was only 0.43 GPa, and its elongation at break of
PBDTTTPD:P(NDI2HD-T) blend was 7.16%, which was a 60-
fold enhancement over that of PBDTTTPD:PCBM. Note that
considering the applications of all-PSCs in the wearable devices,
this high value of elongation at break of our all-PSC satisfies the
requirements61,62. These superior mechanical characteristics of
all-PSC film than that of the PCBM-based BHJ film can provide a
clear advantage for flexible and even stretchable electronic
applications that require high tolerance against severe
mechanical deformations. It should be noted that this is the
first demonstration of all-PSC films with excellent mechanical
resilience.

The excellent mechanical stability of the all-polymer films was
also clearly confirmed by the calculation of toughness (Fig. 3b).
The toughness of the BHJ films was obtained from the integration
of the stress–strain curves in Fig. 3a. We found a remarkable
contrast in the toughness values of the all-PSC films
(568.7 J m� 3) and the PCBM-PSC films (1.2 J m� 3); the tough-
ness of the all-PSC film was 470 times greater than that of the
PCBM-PSC film. The tensile behaviours of the all-PSC film and
PCBM-based film (1:0.5 w/w) were compared using an optical
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microscopy during the tensile tests (Fig. 3c). The results indicated
that there was a dramatic difference in their fracture responses
under tensile strain. The PCBM-based film had a sharp and
through crack at very low value of elongation (0.3%), representing
its brittle nature. In contrast, the all-polymer film had a ductile
nature, exhibiting no crack until high elongation of 7%. This
significantly improved mechanical property of the PBDTTTPD:
P(NDI2HD-T) blend film can be attributed primarily to the
ductility of the polymer films imposed by the entangled polymer
chains39,40. In addition, the optimized BHJ morphologies of the
PBDTTTPD:P(NDI2HD-T) blend with large interfacial area and
well-intermixed polymer domains may contribute to the
enhancement of their mechanical resilience63. The outstanding
mechanical characteristics of the all-PSC films can enhance the
ductility and the endurance against mechanical deformations by
effectively relieving stress without mechanical failure, which is a
critical requirement for flexible PSCs52,53.

To further explore the potential of using all-PSCs in flexible
devices, we measured the bending characteristics3,64,65 of the
PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T) blend films.
Their current–voltage (I–V) characteristics were measured
(Supplementary Fig. 7), and we obtained normalized
conductance [(DI/DV)/(DI/DV)0] by monitoring the change in
the DI/DV values after bending to examine the stability of their
electrical performances against external mechanical deformation
(Fig. 4a). The (DI/DV)0 is conductance value of the film before
any bending. The blend films were prepared on a flexible
polyimide substrate with a thickness of 80 mm. A 70-nm-thick Au
electrode was thermally evaporated onto the films and the
distance between the electrodes was 1 mm. Figure 4b compares

the normalized conductance of the PBDTTTPD:PCBM and
PBDTTTPD:P(NDI2HD-T) blend films after the bending test at
different bending radii (r¼N, 3.0, 1.9 and 1.0 mm). The
electrical property of the fullerene-PSC film was reduced
considerably at r¼ 1.0 mm, compared with the reference sample
at r¼N. The apparent degradation was attributed to the crack
propagation in the fullerene-PSC film by the mechanical
deformation (Fig. 4d). In stark contrast, there was no change in
the electrical and morphological properties of the all-PSC film,
even at very small r value of 1.0 mm (Fig. 4e). In addition, as
shown in Fig. 4c, we compared the normalized conductance of
the PBDTTTPD:PCBM and PBDTTTPD:P(NDI2HD-T) films
after multiple cycles (N¼ 0, 50, 100 and 150) of bending at fixed
r¼ 1.5 mm. As N increased, the PBDTTTPD:PCBM blend film
underwent a massive decrease of the current. However, the
conductance of the all-PSC film was very stable, with only
negligible changes at the same measurement conditions. The
trend of the bending test fully corresponded to the results of the
tensile modulus test, and the mechanical stability experiments
consistently led to the same conclusion: the mechanical durability
of all-PSCs is far superior to that of fullerene PSCs.

In summary, we have demonstrated highly efficient and
mechanically robust all-PSCs. By using PBDTTTPD as the
electron donor and P(NDI2HD-T) as the electron acceptor, all-
PSCs with high PCE of 6.64% have been achieved, which is even
higher than that of control fullerene PSCs (PCE¼ 6.12%). The
enhanced performance of all-PSCs is mainly attributed to the
high VOC (1.06 V) due to the better alignment of energy levels.
Also playing significant roles are the enhanced absorption of
P(NDI2HD-T) in the region of 500–700 nm, as well as the desired
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BHJ morphology of polymer blends with effective exciton
dissociation and charge transport. More importantly, our study
has shown that the all-PSCs have far superior mechanical
durability compared with that of fullerene PSCs: the elongation
at break and the toughness for all-PSCs are over 60 times and 470
times higher than those of the fullerene PSCs, respectively. This is
due to the fact that the polymer acceptor is intrinsically more
ductile than PCBM and can better entangle with other polymer
chains with strengthened interfaces. And the superior electronic
and mechanical performances of all-PSCs would make them
more suitable for applications in flexible and portable devices
than conventional polymer-fullerene PSCs. Our results provide
guidelines for the design of new material systems for high-
performance all-PSCs and demonstrate their potential for future
applications in portable and wearable devices that require both
high performances and mechanical stability.

Methods
Characterizations. Ultraviolet-visible absorption spectra were obtained using a
UV-1800 spectrophotometer (Shimadzu Scientific Instruments) at room tem-
perature. Static contact angles for water and glycerol were measured using contact
angle analyzer (Pheonix 150, SEO, Inc.) equipped with a microsyringe that can
dispense liquid droplets. AFM measurements were performed using a Veeco
Dimension 3,100 instrument in tapping mode. The samples were prepared by spin
coating onto PEDOT:PSS/ITO glasses. RSoXS measurements were performed at BL
11.0.1.2 in the Advanced Light Source (USA) using a series of photon energies to
determine the maximum scattering contrast between the donor and the acceptors.
RSoXS samples were prepared on a PEDOT:PSS/glass substrate under same opti-
mized active layer condition. Then, the active layers were floated on water and
transferred to a 1.0� 1.0 mm, 100-nm-thick Si3N4 membrane supported by a
5� 5 mm, 200-mm-thick Si frame (Norcada Inc.). GIXS measurements were per-
formed at beamline 3C in the Pohang Accelerator Laboratory (South Korea). GIXS
samples were prepared by spin coating onto a PEDOT:PSS/Si substrates. X-rays
with a wavelength of 1.1179 Å were used. The incidence angle (B0.12�) was chosen
to allow for complete penetration of X-rays into the film.

Device fabrication and measurement. The PCBM-PSCs and all-PSCs were
fabricated with an indium tin oxide (ITO)/PEDOT:PSS/(PBDTTTPD:PCBM (or
PBDTTTPD:P(NDI2HD-T))/LiF/Al structure. ITO-coated glass substrates were
subjected to ultrasonication in acetone, followed by extensive rinsing with deio-
nized water and they were treated with ultrasonication in isopropyl alcohol. The
substrates were then dried for several hours in an oven at 80 �C. The ITO substrates
were treated with ultraviolet–ozone before PEDOT:PSS deposition. A filtered dis-
persion of PEDOT:PSS in water (PH 500) was applied by spin coating at 3,000
r.p.m. for 40 s and baking for 20 min at 150 �C in air. After application of the
PEDOT:PSS layer, all subsequent procedures were performed in a glove box under
an N2 atmosphere. Then, each active blending solution was spin-cast onto an ITO/
PEDOT:PSS substrate at 1,000 r.p.m. for 60 s (or at 3,000 r.p.m. for 40 s). (Detailed
preparation of the active layer solutions is described in the Supplementary
Methods). The substrates were then placed in an evaporation chamber and held
under high vacuum (o10� 6 Torr) for more than 1 h before evaporating B0.9 nm
of LiF and 100 nm of Al. The configuration of the shadow mask produced four
independent devices on each substrate. The active area of the fabricated device was
0.09 cm2, which was carefully measured by optical microscope. The J–V char-
acteristics of the devices were measured under simulated AM 1.5G solar irradiation
(100 mW cm� 2,
Peccell: PEC-L01) at ambient condition. This solar simulator system satisfied the
class AAB, ASTM standards. The intensity of the solar simulator was calibrated
carefully by using a standard silicon reference cell with a KG-5 visible colour filter.
The J–V behavior was collected using a Keithley 2400 SMU. The EQE results were
obtained using a spectral measurement system (K3100 IQX, McScience Inc.). This
system applied monochromatic light from a xenon arc lamp at 300 W filtered by a
monochromator (Newport) and an optical chopper (MC 2000 Thorlabs) at
ambient conditions. The EQE data were obtained under dark conditions. The
theoretical JSC values were acquired by integrating the product of the EQE with the
AM 1.5 G solar spectrum and they were in good agreement with the measured
JSC to within 3% error.

Pseudo free-standing tensile test. For the tensile testing specimen, the active
layers were spin-coated onto the PEDOT:PSS/glass substrate. The active layer
specimen with a size of 2.54� 0.5 cm was prepared by using a cutting plotter (GCC
Jaguar IV-61, USA). To float the specimen on the water surface, water was allowed
to penetrate into the PEDOT:PSS layer. Subsequently, PEDOT:PSS was dissolved,
and the active layer was delaminated from the glass substrate. By performing this
process at the water surface, the floating active layer specimen could be obtained.

Specimen gripping was achieved by attaching PDMS-coated Al grips on the spe-
cimen gripping areas using van der Waals adhesion. The tensile test was performed
by a linear stage with a strain rate of 0.06� 10–3 s� 1. During the tensile test, stress
and strain data were obtained through a load cell (LTS-10GA, KYOWA, Japan)
and a digital image correlation (DIC) device, respectively.

Bending test. The I–V curves were measured by a probe-station system (MST
8000C, HP 4156A).
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