370

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

[PAPER

Offline Selective Data Deduplication for Primary Storage Systems

SUMMARY Data deduplication is a technology that eliminates redun-
dant data to save storage space. Most previous studies on data deduplication
target backup storage, where the deduplication ratio and throughput are im-
portant. However, data deduplication on primary storage has recently been
receiving attention; in this case, I/O latency should be considered equally
with the deduplication ratio. Unfortunately, data deduplication causes high
sequential-read-latency problems. When a file is created, the file system al-
locates physically contiguous blocks to support low sequential-read latency.
However, the data deduplication process rearranges the block mapping in-
formation to eliminate duplicate blocks. Because of this rearrangement, the
physical sequentiality of blocks in a file is broken. This makes a sequential-
read request slower because it operates like a random-read operation. In
this paper, we propose a selective data deduplication scheme for primary
storage systems. A selective scheme can achieve a high deduplication ratio
and a low I/O latency by applying different data-chunking methods to the
files, according to their file access characteristics. In the proposed system,
file accesses are characterized by recent access time and the access fre-
quency of each file. No chunking is applied to update-intensive files since
they are meaningless in terms of data deduplication. For sequential-read-
intensive files, we apply big chunking to preserve their sequentiality on the
media. For random-read-intensive files, small chunking is used to increase
the deduplication ratio. Experimental evaluation showed that the proposed
method achieves a maximum of 86% of an ideal deduplication ratio and
97% of the sequential-read performance of a native file system.

key words: data deduplication, selective deduplication, rank based dedu-
plication

1. Introduction

Data deduplication reduces required disk space by eliminat-
ing redundant data in storage. The redundant data is iden-
tified by a hash value. Figure 1 shows how a data dedu-
plication scheme works. The deduplication requires addi-
tional I/O operations to calculate a hash value for data and
compare its value with that of existing data. Most previ-
ous deduplication works have considered backup storage
systems [1]-[9]. However, data capacity is still important
for primary storage. The International Data Corporation
(IDC) forecasts that total disk capacity will grow at an an-
nual growth rate of 43.6%, because the size of individual
files, such as virtual disk files, image data, video data, and
rich media files, are much higher[1]. Therefore, primary
storage should be considered as a data deduplication target.

When we apply data deduplication to a primary stor-

Manuscript received January 30, 2015.
Manuscript revised August 8, 2015.
Manuscript publicized October 26, 2015.
"The authors are with POSTECH, Hyoja-dong, Pohang, 790—
784 Republic of Korea.
a) E-mail: baksejin@postech.ac.kr
b) E-mail: cipark@postech.ac.kr
DOI: 10.1587/transinf.2015EDP7034

Sejin PARK'®, Nonmember and Chanik PARK™, Member

. Addr. JO 1 314151617
Disk Daa |A|B|A|B|C|A|B|D }(a)
Dedupe Addr. 01112 415 717
Map Mapping|l O | 1 JOJ1]4]0]1]7
. Addr. O] 1121314151617
Disk Data |A|B|-|-]c|-]-|D
— (b

Hash Hash Addr RefCnt ®)
Table Hash(A) 0 3

Hash(B) 1 3

Hash(C) 4 1

Hash(D) 7 1

Fig.1 Data deduplication. (a) shows a disk layout without deduplica-
tion, and (b) shows a disk layout with deduplication. In (a), 8 data blocks
are used, but in (b) only 4 blocks are used. Four blocks (1, 4, 5, 7) are freed
by the deduplication map. The hash table maintains a hash value and its
corresponding address with a reference counter. The hash value is used to
identify the data.

age system, it is important to maintain a low I/O latency
while achieving a high data deduplication ratio. Typically,
data deduplication methods for primary storage systems are
classified into two approaches: offline and inline. The of-
fline approach executes deduplication during idle time, and
the inline approach conducts deduplication at every write
operation.

The advantage of inline data deduplication is that it
does not require additional space for deduplication. How-
ever, this method requires additional I/O latency. To miti-
gate this overhead, many prior studies have suggested alter-
native smaller hash index tables [4], [7], [10]. Owing to the
smaller hash index table size, the hash table lookup over-
head can be reduced, at the cost of a deteriorated dedupli-
cation ratio. Thus, we see the trade-off between deduplica-
tion ratio and I/O latency. In addition, if a file is update-
intensive, its deduplication is worthless. However, even
recent research on inline primary data deduplication tech-
niques [4], [7], [10] does not consider update-intensive files.

In contrast, offline deduplication can avoid additional
I/O latency since it only runs deduplication when the system
is idle. Moreover, it can easily consider each file’s access
characteristics during data deduplication. However, existing
offline primary data deduplication techniques [11]-[13] do
not consider I/O latency. That is, when data is deduplicated,
the physical location of each block can be randomized, even

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

if the original data was sequential.

In this paper, we propose a selective offline data dedu-
plication method that efficiently controls the trade-off be-
tween the data deduplication ratio and the I/O latency.
Specifically, file access characteristics are analyzed, consid-
ering both sequential access and update patterns. Each file is
assigned a rank according to its access characteristics. The
rank of a file determines the proper chunking method, to
balance a high deduplication ratio with a low I/O latency.

The contributions of this paper are as follows.

1. A rank-based selective deduplication method effec-
tively classifies deduplication target data according to
its access pattern and time stamp.

2. The method effectively controls the tradeoff between
the data deduplication ratio and I/O latency. It supports
a high deduplication ratio for randomly accessed files
and a low I/O latency for sequentially accessed files.

3. The proposed method can be easily applied to existing
file systems.

The remainder of the paper proceeds as follows: Sect. 2
lists related work on deduplication. Section 3 describes the
problem and Sect. 4 explains the detailed design of the pro-
posed method. Section 5 evaluates the proposed method
based on the prototype, and Sect. 6 concludes.

2. Related Work

Data deduplication can be classified into two methods: in-
line and offline.

Inline data deduplication: For inline data deduplication,
many studies focused on hash index table compaction be-
cause of the large size of the hash index table. Lillib-
ridge et al. proposed a sparse indexing method to reduce
in-memory overhead [4]. However, it impacted the dedu-
plication ratio because of the sparse set of the index ta-
ble. Xia et al. proposed a similarity-locality based dedu-
plication scheme to reduce RAM overhead and support high
throughput [7]. Srinivasan et al. proposed the iDedup al-
gorithm [10]. They claimed that data deduplication causes
additional sequential-read-latency problems since data are
stored randomly on the disk. That is, the data blocks of
a file are fragmented by the data deduplication processing.
To solve this problem, they do not deduplicate short data-
block sequences. They only deduplicate long data-block
sequences to reduce fragmentation. Thus, the method can
reduce sequential-read latency. However, though the pro-
posed deduplication algorithm can reduce I/O latency, it also
reduces the data deduplication ratio. This is because they
applied the algorithm to all data blocks without considering
the file access characteristics. Moreover, it requires an addi-
tional non-volatile memory buffer for the temporary storage
space of the deduplication operation, which is unusual for
primary storage systems.

El-Shimi et al. found that the chunk size distribution
is skewed at the minimum chunk size and maximum chunk

371

sizes [14]. That is, the chunk boundary is forced by the max-
imum chunk size and it causes a low deduplication ratio.
They proposed a regression chunking method for primary
data deduplication to obtain a uniform chunk-size distribu-
tion.

Offline data deduplication: EMC Celerra [12] and NetApp
ASIS [11] are offline data deduplication systems. EMC Cel-
erra supports file-level data deduplication and compression
for older files. However, it does not support a subfile-level
method, and the compression technique requires additional
decompression overhead when it is re-accessed. On the
other hand, NetApp ASIS supports a subfile-level method
but has a complex configuration and aims toward the enter-
prise environment. In addition, existing offline data dedu-
plication techniques do not consider the I/O latency that is
important for primary storage systems.

3. Problem Statements

There are several factors to be considered in designing of-
fline data deduplication for primary storage systems.

Sequential read latency: Primary storage is sensitive to I/O
latency. Unfortunately, data deduplication has a detrimental
effect on sequential-read latency. In most cases, a file con-
sists of physically contiguous blocks in the file system to
support a low sequential-read latency. When a file is dedu-
plicated, however, the file chunks are no longer physically
contiguous. The location of each chunk is determined by
the location of the already existing chunks. Figure 2 shows
this phenomenon. Figure 2-(a) shows the original state of a
storage system that has not been deduplicated. In this stor-
age, there are six files, File 1 to File 6, and each file consists
of blocks with unique values. Files 3 and 4 are sequential-
read oriented.

When we conduct deduplication with big chunks (3
blocks), we will lose considerable deduplication potential,
but we will achieve a good read latency, as depicted in
Fig.2-(b). In contrast, if we conduct deduplication with
small chunks (1 block), we will achieve a much higher dedu-
plication ratio, but we will lose sequential-read latency, as
depicted in Fig.2-(c). In this case, to read File 4, we must
retrieve block D from File 2, blocks F and A from File 1,
block B from File 3, and block C from File 1 again. Though
the read request was sequential, this was obviously handled
as arandom read request. Figure 2-(d) shows the goal of this
paper: selective deduplication. It deduplicates sequential-
read-oriented files (Files 3 and 4) with a big chunk size to
achieve good sequential-read performance; the other files
are deduplicated using a small chunk size to achieve a high
deduplication ratio.

Trade-off between deduplication ratio and I/O latency:
Achieving a high deduplication ratio is essential for data
deduplication. However, the problem here is that there is
a trade-off between the deduplication ratio and the I/O la-
tency. Figure 3 shows the trade-off for various chunk sizes.

A|FIC|F| |FIGID|I|]J

File 1 File 2
[A[FIC[F] [FIGID[I[J]
File 3 File 4

A[BIC] [DIEIFIA[BIC
ile File 6
[A[BIKIL[E] [G[HM[]]

File 3 File 4

C>| [AIBIC] [DIEIF]
i File 6
AIBIKILIF] GIHMIT

(b) By Normal Deduplication

(a) Before Deduplication
@ Chunksize = 3 Blocks (Big chunk)
Bad DDRatio, Good Read Latency

File 1 File 1 File 2

File 2
[A[FICI i (LIGIDII]J] A[FICi} (I [GIDII[J

File 3 File 4) File 3 File 4 ,
PAIBICH (DIEIEIATBICH [AIBIC] [DIEIFIA{GICH

File 5 File S

 File6
KILiCE CHM

_ File6
[KILTE (CIHM

(c) By Normal Deduplication
Chunksize = 1 Block (Small chunk) Chunksize = 1 Block for rand. read file

Good DDRatio, Bad Read Latency ~ Chunksize = 3 Blocks for seq. read file
Good DDRatio, Good Read Latency

(d) By Selective Deduplication

Fig.2 Illustration of selective deduplication. Files 3 and 4 are
sequential-read-oriented files and the others are random-read oriented. (a)
depicts the not-yet-deduplicated original file state. (b) and (c) depict dedu-
plication results using big and small chunking methods, respectively. (d)
depicts the results of selective deduplication. Since Files 3 and 4 are
sequential-read oriented, these files are deduplicated with big chunks to
achieve low read latency, and the others are deduplicated with small chunks
to achieve a high deduplication ratio.

35 0 %
330 S
< 5 8
g2 B
- =]
5])
g2 15 §
o -
[a) 20 §
(]

0 25 A

® S
CEEFSLELS

Chunk size
&

#Deduplication Ratio <-Sequential Read Latency

Fig.3 Trade-off between data deduplication ratio and sequential-read la-
tency. A bigger chunk size results in a worse data deduplication ratio, but
a better sequential-read latency.

For the sequential-read latency experiment, we made a 100
MB file that was randomly stored in fixed-size chunks on the
disk, but the data within each chunk was stored sequentially.
For example, if the chunk size is 1,024 KB, then the 100
MB file consists of 100 chunks that are randomly located
on the disk, but each chunk consists of sequential blocks.
The sequential-read latency of a 1,024 KB-sized chunk is
seven times faster than that of an 8 KB-sized chunk. In this
experiment, we use Ubuntu 12.04 LTS with Ext4 file sys-
tem [15]on Intel Xeon E5620 2.4 GHz CPU and 4 GB of
RAM. Note that the Linux default read-ahead mechanism is

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

enabled.

It appears that the I/O latency problem can be solved
by using a bigger chunk size; however, it causes an-
other problem: it reduces the deduplication ratio. For
the deduplication-ratio experiment, we used the developer’s
workload described in Sect. 5.2. The deduplication ratio dif-
ference between a 1,024 KB-sized chunk and an 4 KB-sized
chunk was more than double. In other words, a bigger chunk
size resulted in a lower data deduplication ratio. Thus, we
need a solution to achieve a low I/O latency while simulta-
neously achieving a high data deduplication ratio.

Offline write operation support: Special care should be
taken for the write operation in offline data deduplication.
For example, let us assume that block #N is already dedu-
plicated and a write request is issued to it. In this situation,
the deduplicated block #N cannot be updated immediately
because other files may have shared links to it. Moreover, if
block #N is updated, then the hash table should be updated
to maintain consistency. This situation should be considered
for offline data deduplication.

4. Design

Gibson and Miller [16] analyzed long-term file-activity pat-
terns in a UNIX workstation environment at their university.
They showed that more than 50% of files were not accessed
at all for about 300 days, only 1.2% of files were accessed
daily, and most modifications occurred on the day the file
was created. The lifetime of more than 90% of deleted files
was a single day [17]. Previous research on file access anal-
ysis has shown similar results [16], [18], [19]. That is, most
files are not accessed for a long time. Only a few files are
accessed for a short period.

According to observations on file accesses, only a few
files are frequently accessed; the others are rarely used. We
call them hot and cold files, respectively. For cold files,
we concentrate on maximizing the deduplication ratio rather
than I/O latency, since they are rarely accessed. In con-
trast, for hot files, we concentrate on minimizing the I/O
latency for the sequential read, since their access frequency
is higher.

In order to solve the sequential-read latency issue, we
monitor each file to gather access patterns and conduct
deduplication using big chunking for hot and sequential-
read-intensive files. To solve the trade-off between dedupli-
cation ratio and I/O latency, we conduct deduplication using
small chunking for random-read-intensive files or cold files.

To support this scheme efficiently, we assign a rank to
each file. The rank represents each file’s access patterns and
its activeness. The deduplication policy is then selected by
the rank of each file. For offline write operation support,
we use a lazy update scheme that naturally solves the write
latency.

4.1 Architecture

Figure 4 depicts the overall architecture of the proposed sys-

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

| Virtual File System |

1/0O request

Proposed Selective Deduplication Module

| I/0O Monitor |<—>

Rank Queue Manager
| QRankO " QRankl ” QRankZ ” QRank3 |

A

| Deduplicator I(—)

Y

A
A 4
Ioyuey

v \4

| File system |
A

A\

File [Normal [Big [Small [Hash
System Blocks Chunk Chunk Table
Metadata Blocks Blocks

Fig.4 Architecture of the proposed system. The proposed system mon-
itors every 1/O request from the VFS layer, and the Rank Queue Manager
updates the rank queue according to the current I/O operation. When the
system is idle, the Ranker and the Deduplicator run. The Ranker ranks
all files in Qranko and the Deduplicator conducts deduplication for newly
ranked files.

tem. It consists of an I[/O Monitor, Rank Queue Manager,
Ranker, and Deduplicator. The I/O monitor captures file
operations in the virtual file system (VES) interface and up-
dates the file’s sequential or random access counter and time
stamps. Then, the Rank Queue Manager updates the rank
queues according to the file operations. When a new file is
created, the Ranker assigns it a rank of 0 and inserts it into
Qranko-

The Rank Queue Manager maintains four rank queues,
from Qganko t0 Qrank3- Note that each queue is managed by a
least-recently-used (LRU) algorithm. Newly created files or
recently modified files are located in Qranko. Thus, update-
intensive files are always located in the front of Qgranko. The
Rank Queue Manager locates the hot and sequential-read-
intensive files in Qgrank;. Hot and random-read-intensive
files are located in Qgank2, and cold files are located in
Qrank3- Qrank3 €xists only conceptually; the cold files are
not directly managed by a queue.

When the system is idle, the Ranker and the Dedupli-
cator run. The Ranker assigns a new rank to the files in
Qranko- When the Ranker assigns a new rank to a file, using
the algorithm described in Fig. 5, the file is deduplicated by
the Deduplicator according to its assigned rank. If the file is
Rank 1, then the Deduplicator uses a big chunking method
to preserve its data blocks’ sequentiality on the disk. For

373
Table1 Rank assignment and the associated deduplication policy
Rank Characteristics Deduplication mode

Rank 0 Need to be evaluated (Newly cre- None
ated or recently modified files)

Rank 1 Hot and sequential-read-intensive big chunking
access pattern

Rank 2 Hot and random-read-intensive ac- Small chunking
cess pattern

Rank3 Cold Small chunking

Rank 2 and Rank 3 files, it uses a small chunking method
to maximize the deduplication ratio, because those files do
not incur the sequential-read latency problem. To do this,
the Deduplicator queries the file system to retrieve the tar-
get file blocks and hash tables, and then updates the hash
table blocks and underlying file system’s metadata to free
redundant blocks. When the deduplication for a file is com-
pleted, the file is removed from Qganko and inserted into its
appropriate rank queue.

4.2 Rank Assignment by File Access Characteristics
4.2.1 File Ranking

We define four ranks according to each file’s access pattern.
Table 1 describes each rank, its characteristics, and its dedu-
plication mode.

Rank 0 is assigned to files that need to be evaluated for
a new rank. That is, the rank of newly created or recently
modified files is 0. Note that update-intensive files will be
naturally assigned to Rank 0.

Rank 1 is assigned to files that are hot and sequential-
read intensive. For these files, we apply big chunking for
data deduplication. Although the deduplication ratio likely
decreases with big chunking, we can achieve a high perfor-
mance sequential read.

Rank 2 is assigned to files that are hot and random-read
intensive. Small chunking is applied to these files to achieve
a high data deduplication ratio.

Rank 3 is assigned to files that are cold. A file is de-
fined as cold if it has not been accessed for a given period
(MAX_HOT_INT in Table 2), regardless of its access char-
acteristics. Small chunking is applied to Rank 3 files for a
high deduplication ratio.

To prevent unnecessary ranking operations, we main-
tain three parameters (see Table 2). The parameter
MAX_HOT_INT determines the file’s hot/cold state. When
a file is accessed, it is marked as hot. However, if a file is
not accessed for the interval MAX_HOT_INT, it is marked
as cold.

To be assigned a new rank, a file needs sufficient eval-
uation time. This evaluation not only collects the file’s ac-
cess characteristics but also prevents unnecessary deduplica-
tion. The parameter MIN_EVALUATION_INT is the mini-
mum evaluation interval needed to be ranked; the parameter
MIN_EVALUATION_CNT is the minimum access count to
be ranked. The default values were determined empirically
by analyzing real-world workloads. The parameters are not

374
Table 2 Parameters
Type Description Default value
MAX_HOT.INT Maximum interval from 2 weeks

last access to retain

hot state

Minimum evaluation 2 days
interval. (Minimum
written (modified) in-
terval to be ranked.)
Minimum evaluation
count. (Minimum ac-
cessed count to be
ranked)

MIN_EVALUATION_INT

MIN_EVALUATION_CNT 100 times

Table 3 Information used to determine the rank of a file
Type Field Description
time atime Accessed time
time mtime Modified time

integer seqCnt
integer rndCnt

Sequential access counter
Random access counter

sensitive. As long as the values are not too small, the method
will show similar results.

Table 3 shows the information used to determine the
rank of a file. atime and mtime represent the access time
and the modified time, respectively. In addition, seqCnt and
rndCnt maintain the number of sequential accesses and ran-
dom accesses of a file, respectively. These values are up-
dated by the I/O Monitor module on every read/write ac-
cess. The field atime is updated at every I/O operation. The
field mtime is updated when the file is modified by a write
operation.

For every read operation in a file, the I/O Monitor up-
dates the seqCnt or rndCnt field according to the file-access
pattern. The file-access pattern is determined by the file po-
sition. If the requested offset is the current file position +1
or —1, then the request is regarded as a sequential request
and seqCnt is increased. Otherwise, the request is regarded
as a random request and rndCnt is increased.When a file is
ranked by the Ranker, the seqCnt amd rndCnt are reset to
Zero.

The ranking algorithm in Fig. 5 determines the rank of
a file. The Ranker executes this algorithm when the system
is idle. First, it checks the modified time to see whether a
file has been recently updated. The recently updated files
are assigned to Rank O to avoid deduplication. If not, the
Ranker checks the recently accessed time to determine the
hot/cold state. If the file is cold, then the file is assigned to
Rank 3. If not, the Ranker checks the total monitored counts
to see whether the file has enough evaluations to be ranked.
If it has a high enough evaluation count, then it is assigned
Rank 1 or Rank 2, based on the sequential access counter
and the random access counter.

4.2.2 Queue Based Ranking Management
In order to assign or update a rank, we need an effective data

structure to traverse all data files. We do not need to evaluate
to rank already deduplicated, recently accessed, or recently

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

int rank(file_t file)
{
if ((NOW - file.mtime) < MIN_EVALUATION_INT)
then return RANKO,
else if ((NOW - file.atime) > MAX_HOT_INT)
then return RANK3,;
else if ((file.seqCnt + file.rndCnt) < MIN_EVALUATION_CNT)
then return RANKO;
else if (file.seqCnt > file.rndCnt)
then return RANK1,
return RANK2;

}

Fig.5 Ranking algorithm

modified files. To manage each file’s rank effectively, we
propose a multi-queue-based rank management scheme. In
this system, three LRU queues named Qganko, Qranki, and
Qrank2 are proposed. The files are represented by the inode
number in the queue. Qranko Maintains files that need to be
evaluated. Newly created or recently modified files reside
in Qranko- Qrank1 and Qrank> maintain files whose ranks are
Rank 1 and Rank 2, respectively.

Whenever a write operation is issued to a file in Qgranko,
Qranki and Qgank2, the file is moved to the top of gk to
wait for assigning a new rank. For already ranked files, they
still preserve their deduplicated state when they are moved
to Qranko Since some chunks of the file may be referenced
by other files.

The file in Qgranko Will not be deduplicated if it is ac-
cessed again within the interval of MIN_EVALUATION_INT
(in Table 2). For instance, there is a file that is updated once
a day. This file moves to the top of Qgranko Whenever it is
modified. Thus, it will not be deduplicated since the Ranker
checks Qranko from the last entry. Even if it reaches the last
entry, the Ranker does not assign a rank, owing to the rank-
ing algorithm. Thus, update-intensive files are effectively
filtered. On every file read operation, the file is moved to
the top of its resident queue. Thus, the last entry is always
the least-recently-used file, which makes it easy to find cold
files.

Detailed queue management is described in Fig. 6.
When a new file is created, it is inserted into Qgranko. If
a file is modified by a write operation, then it needs to be
reevaluated. Therefore, it moves to the top of Qgranko When it
is modified. This operation not only gives a re-ranking op-
portunity to a file that was already assigned a rank, but also
effectively prevents update-intensive files from being dedu-
plicated.

In Fig. 6, Qranks exists virtually. It conceptually main-
tains Rank 3 files, which are cold. If a file does not reside
in Qranko, Qrank1> OF Qrankz then the file is Rank 3. If a cold
file is accessed, it moves to the top of Qgranko to be evaluated
again, because it is not cold anymore.

When the system is idle, the Ranker begins to look for
cold files in Qgank1 and Qrank2. Since these queues are or-
dered in an LRU manner, checking only the last entry is
enough to find cold files. If the Ranker finds a cold file, the

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

R 11!10! 9 ——Q
Rank0

I

: If the file satisfies Rank1

! MRU On Read | Ry |

: |8|oc-o-c-cou|7|uouolzl_';i QRankl
I

[&———On WriteJ |

[<-On Writs
- -If the file satisfies Rank2- = = = = = = = = =

On Read
RY LRU

A o e o =) Qe

[<-On Write |
s s] If the file satisfies Rank3— - —
| '

i

MRU
: 1

—>= coqulpooo=1|ooooooo
H L) L !

“LRU

—On Read/Write
]
Broko ORanki Orakz DiRanks
S —> ---> — > —
Rank0 Rankl Rank2 Rank3 File Access
condition condition condition condition

Fig.6 Rank queue management. The purpose of the LRU queue is to
efficiently find cold files and filter update-intensive files. The ranking con-
ditions are determined by the ranking algorithm depicted in Fig. 5. Qrank3
exists virtually because all cold files belong to Qrank3. There is no need to
maintain them in an LRU queue.

file is assigned to Rank 3 and the Deduplicator deduplicates
the file using small chunking. The Ranker repeats this job
until there are no cold files.

After that, the Ranker begins ranking from the last en-
try to the first entry of Qgranko- If the target file is again as-
signed to Rank 0, it is moved to the top of Qganko- If the
target file is assigned to Ranks 1, 2, or 3, the Deduplica-
tor conducts deduplication according to its ranking, and the
file is evicted from Qganko and inserted to its correspond-
ing queue. Note that the deduplication mode depends on the
ranking. A big chunking method is used for Rank 1 files and
a small chunking method is used for Rank 2 or Rank 3 files.
After the deduplication operation is completed, the Ranker
checks Qranko again until there are no files that need to be
assigned a new rank.

In Qgranko, already ranked (deduplicated) files can be
inserted. Those are also re-deduplicated according to their
new rank. In this case, some chunks of the file may be refer-
enced by other files. The Deduplicator checks those chunks
by the reference counter in the hash table. During a file is
re-deduplicated, if a chunk of the file is not referenced, the
reference counter of the chunk is decreased. If a reference
counter of a chunk is zero, the chunk is removed from the
hash table. Otherwise, the chunk is preserved in the hash
table.

4.3 Offline Write Operation Support

In an offline system, the write operation requires special
handling. A write operation with newly allocated blocks
is not a problem. However, a write operation with al-
ready deduplicated blocks must be handled carefully, be-

375

File offset
Hash table

Replication
MK\

Replicated map
HEEE

Hash Addr RefCnt
A 1 1
B 3 3

Phys. Block Addr.
Hash value A|C|B|D|E

(a) (b)

Fig.7 Updated map replication (a) and hash table (b) after file offset
#2 is updated. When a file is updated, the original map is replicated and
the replicated map preserves the original mapping information. After map
replication is finished, the current map is updated. This makes the hash ta-
ble and file mapping information consistent since the replicated map main-
tains the original mapping.

cause some blocks may be shared by other files. If we up-
date the entire data structure at every write operation, it will
incur significant overhead. Actually, this kind of handling is
an inline system, not an offline system.

In order to support write operations for an offline sys-
tem, we propose to update the map replication. In Fig. 7, if a
write operation for an already-deduplicated block is issued,
then the original file mapping information is replicated to a
new block so that the original mapping is preserved. After
the copy is complete, the file’s mapping information updates
according to the write operation.

The original map is preserved without any modifica-
tion. Thus, the reference counter of the hash table is con-
sistently maintained because the hash table is referenced by
the original map. By doing this, the file update operation is
performed without hash table update overhead.

The overhead for an update operation is a one-time
map copying and a one-time new block allocation for the
modified contents. Once a new block is allocated and the
map replication is complete, later update operations for that
block do not require any further overhead.

4.4 Space Overhead Analysis

To support the proposed system, three additional structures
are required: a hash table, additional inode information, and
the rank queues. Although the proposed method requires ad-
ditional memory space for the hash table, it is only needed
when the offline deduplication works. That is, there is no
additional memory space overhead for the hash table while
the deduplication is stopped. However, the system requires
a small additional space for file information in the inode
structure. As mentioned in Table 3, a file requires 16 addi-
tional bytes for the information. However, this value is small
enough to fit in memory and only currently used files’ inode
entries are loaded into memory. Most of them are stored
on the disk. Lastly, the sizes of Qranko, Qranki> and Qrank2
depend on the number of hot files in the workload. If the
total workload size is 1 TB, and the average file size is 100
KB, and 10% of the files are hot, then the total queue size
is 4 MB. Note that the proposed system does not maintain
QRranks for the cold files.

376

5. Evaluation

For the evaluation, we used Ubuntu 12.04 LTS on an Intel
Xeon E5620 2.4 GHz CPU with 4 GB of RAM. We set the
big chunking size to 256 KB, and the small chunking size
to 4 KB. In order to see the relationship between the data
deduplication ratio and the sequential-read latency, we ex-
perimented on file system data sets, including synthetic and
real-world data sets. In this experiment, we can observe the
runtime overhead and the performance interference of the
offline operation of the deduplication thread.

5.1 Prototype

We built a prototype on top of a FUSE-based [20] Ext2 file
system [21]. FUSE stands for File system in User Space.
Many file systems are implemented using FUSE owing to
its convenience and simplicity. Although it works in the user
space, it directly accesses block devices and manages block
de/allocations without any help from the underlying file sys-
tem. This is important for the prototyping of the proposed
system because, if the block management is performed by
the underlying file system that serves the FUSE binary, our
experiments may show abnormal results.

The prototype consists of the I/O monitor layer, rank
queues, ranker thread, and the deduplication engine. When
the system is idle, the ranker thread fetches a target file from
Qranko- The ranking algorithm in Fig. 5 determines the rank
for the fetched file, and the deduplication engine selectively
deduplicates the file according to its rank. Big and small
chunks are stored in the chunk store. Though they are clas-
sified into two different sizes, they are essentially a set of
blocks that are managed by the file system, because we use
the file system’s block-mapping structure as the deduplica-
tion mapping structure. The hash table resides in the dedu-
plication engine. The hash table index consists of a SHA-1
[22] hash value, the address of the chunk, and the reference
counter. The size of a hash table entry is 28 bytes (20 bytes
for the SHA-1 hash, 4 bytes for the reference counter, and
4 bytes for the physical block number of the first block of a
chunk). The file information is stored in the inode structure.
The file information size is 16 bytes, as depicted in Table 3.

5.2 Sequential Latency vs. Deduplication Ratio

In order to evaluate how the proposed selective deduplica-
tion method works, two different workloads were consid-
ered; a synthetic data set and a real-world data set. From
these results, we can see the trade-off between the dedupli-
cation ratio and the sequential-read latency. In this paper,
deduplication ratio is calculated by whole size after dedu-
plication over whole size before deduplication.

5.2.1 Synthetic Data Set

In order to see the detailed behavior of the selective dedupli-
cation method, we evaluated the proposed system based on

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

a synthetic workload. We generated two file sets with low
and high deduplication ratios, because the sequential-read
latency depends on the deduplication ratio. We generated
the file sets with various file size range to see practical ef-
fect. Table 4 shows detailed description of the workloads
including their deduplication ratio for big-sized chunking
and ssmall-sized chunking method and Fig. 8 shows their
file size distribution.

In order to evaluate sequential read latency, we make
the workloads deduplicated state. For big-sized and small-
sized chunking methods, we conducted offline data dedupli-
cation by their chunking size to the workloads since these
methods do not require runtime read characteristics. For se-
lective deduplication, we create the workloads on the pro-
posed system and we read whole files according to the se-
quential read ratio from 90% to 10%. Then the proposed
method assigns a rank for each file and deduplicates it. Af-
ter each workload is deduplicated, we evaluate read latency
by reading all files in the workload according to its sequen-
tial read ratio from 90% to 10%. In this experiment, 10% of
sequential read ratio means, 10% of randomly chosen files
in the workload are read sequentially and 90% of the other
files are read randomly.

By this experiments, we can observe the accuracy of
the file-read-pattern detection method of the ranking algo-
rithm and compare the sequential-read latency and the dedu-
plication ratio. Table 4 shows a detailed description of the
workload.

Figures 9 and 10 show the response time cumulative

Table4 Synthetic workload description
Workload Synthetic workload ~ Synthetic workload
#1 #2
Characteristics High deduplication =~ Low deduplication
ratio ratio
Total workload size 2.5GB 2.5GB
File size distribution 4KB-32MB 4KB-32MB
Number of files About 5,000 files About 5,000 files
Deduplication ratio with 20% 5.1%
big chunking
Deduplication ratio with 70.3% 20.5%

small chunking

100

" el
60 /

40 /

ol

7~

0 —

CEELEEEPEISSES

Cumuulative (%)

File size

Fig.8 File size distribution for the synthetic workloads described in Ta-
ble 4. The two synthetic workloads have the same file size distribution. We
generate a set of files with various range (4KB - 32MB).

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

(a) Seq:Rand = 90:10 (whole workloads)

377

(b) Seq:Rand = 75:25 (whole workloads)

100 e o 100 o ™
‘
al o
80 1 R 80 d B
d @
@ a Juf
by 60 @ E 60 d i
>
5 4 5}
= juil =
E a0l 1 40 1
5] o
Y
20 | f =~ Native Fuse-ext2 —=— | 20 & . Native Fuse-ext2 —&— |
e Big-sized Chunking) Big-sized Chunking
"~ Selective Deduplication ----e---- ; Selective Deduplication --------
i j'é Small-sized Chunking & f Small-sized Chunking &
0 | | 0 | !
1 10 100 1000 1 10 100 1000

Response time (ms)

(c) Seq:Rand = 50:50 (whole workloads)

100 ———
L 3 =}
a
80 Ju} 1
Jua)
S
0 60 d B
& o
= =
E o}]
=
@)
20 F o Native Fuse-ext2 —a— |
Big-sized Chunking
Selective Deduplication ----e----
0 Smal‘l—sized Chunk‘ing =)
1 10 100 1000
Response time (ms)
(f) Seq:Rand = 50:50 (seq. files only)
100 =
o
P
80 =l k
o
S
o 60 k
§
=
E w0} 1
=
®)
20 F ‘i‘ - Native Fuse-ext2 —a— |
V-3 Big-sized Chunking
! Selective Deduplication -
oL Small-sized Chunking &

1 10 100 1000

Response time (ms)

100

(d) Seq:Rand = 25:75 (whole workloads)

e Native Fuse-ext2 —=—
Big-sized Chunking
Selective Deduplication ----e----
Sm@ll—sized Chunl‘dng =

100

10 100 1000

Response time (ms)

(g) Seq:Rand = 25:75 (seq. files only)

80

60

40

20

J‘ Selective Deduplication ----e----

Native Fuse-ext2 —a— |
Big-sized Chunking

Small-sized Chunking &

10 100 1000

Response time (ms)

Response time (ms)

(e) Seq:Rand = 10:90 (whole workloads)

100

80 B
60 E
40 B
20 Native Fuse-ext2 —&— |

Big-sized Chunking
Selective Deduplication --------

ok Small—sized Chunl‘(ing £

1 10 100 1000

Response time (ms)

(h) Seq:Rand = 10:90 (seq. files only)
100

80

60 f/ g g

Native Fuse-ext2 —2— |
Big-sized Chunking
Selective Deduplication ----e----
Srqall—sized Chunl‘dng 8

10 100 1000

Response time (ms)

Fig.9 Analysis of synthetic workload with high deduplication ratio. (a) - (e) show the response time
CDF results of various read operations from 90% sequential to 10% sequential for complete workloads.
(f) - (h) show the response time CDF results using a set of files accessed only by sequential read during
the experiment to see the exact effect of the selective deduplication. Native Fuse-ext2 means the unmod-
ified Fuse-ext?2 file system. The other experiments were conducted under the proposed system based on

the Fuse-ext2 file system.

distribution function (CDF) and the deduplication ratio re-
sults of the synthetic workloads with a high deduplication
ratio and low deduplication ratio, respectively. In order to
generate the CDF figures, we used response time per each
file. Specifically, the figures from (a) to (e) are the results of
reading whole files in the workloads, and the figures from
(f) to (h) are the results of reading only sequentially read
files, to see the exact effect of the selective deduplication.

By comparing the two synthetic workloads, we can observe
that the difference in read latency between big chunking and
small chunking depends on the deduplication ratio.

We can observe the runtime I/O monitoring overhead
of the proposed system by comparing the selective dedupli-
cation with the Native Fuse-ext2. Figures 9-(a) and 10-(a)
which have little read latency in the random workload-have
a very small read-latency difference between them. That is,

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

378
(a) Seq:Rand = 90:10 (whole workloads) (b) Seq:Rand = 75:25 (whole workloads)
100 T = 100 T =
o
80 B 80 k
S
T 60 . 60 a E
B)
4:_“;
= d
E a0l 1 40 | d 1
=
O
20 | Native Fuse-ext2 —=&— | 20 Native Fuse-ext2 —&— |
gj ’ Big-sized Chunking Big-sized Chunking
Selective Deduplication ----e---- Selective Deduplication --------
o L /’] Smal‘l—sized Chunk‘ing = 0 Small—sized Chunl‘(ing 8
1 10 100 1000 1 10 100 1000
Response time (ms) Response time (ms)
(c) Seq:Rand = 50:50 (whole workloads) (d) Seq:Rand = 25:75 (whole workloads) (e) Seq:Rand = 10:90 (whole workloads)
100 T = 100 e 100 T —=
o) .IZI) =l
=
80 k 80 k 80 K E
Pe
S 0
° 60 b 60 b 60 o0 B
£ ',n'"D
= /,‘JD‘
E o} . 40 b . 40 b e —
= ¥
o . /,’
j f o
20 F /. @ ~Native Fuse-ext2 —&— 20 + ~Native Fuse-ext2 —4— | 20 } o _Native Fuse-ext2 —4— |
7;"3 Big-sized Chunking - Big-sized Chunking f prd Big-sized Chunking
Selective Deduplication ----e---- Selective Deduplication ----e---- 4{,‘3 Selective Deduplication --------
0 ' " Smal‘l—sized Chunk‘ing a 0 .,.v"j Sm@ll—sized Chunl‘dng e 0 Small—sized Chunl‘(ing a
1 10 100 1000 1 10 100 1000 1 10 100 1000
Response time (ms) Response time (ms) Response time (ms)
(f) Seq:Rand = 50:50 (seq. files only) (g) Seq:Rand = 25:75 (seq. files only) (h) Seq:Rand = 10:90 (seq. files only)
100 = 100 100
e T —F T o " =
7o £ . £ c
L é = i | ’j‘ -8) i i,‘ @ |
80 { 8 £ 50 1 ’
—~ /n jaf [2 a
SN] 4] ol ¢]
E 60 /. @ 60 ‘ ./D) ‘ [}
p=1 $ o an s ju)
£ 40 £ E 40 | (ﬁ E 40 | o]
= .
®) ‘rD » o [} :
20 F r Native Fuse-ext2 —=— | 20 + # Native Fuse-ext2 —&— | 0k oo Native Fuse-ext2 —&— |
£ Big-sized Chunking A\h Big-sized Chunking J.i] Big-sized Chunking
P Selective Deduplication ----e---] Selective Deduplication ----e--- : Selective Deduplication ----e----
0) Sma!l—sized Chunk‘ing a 0 j Small—sized Chunl‘dng e 0 ’f Srqall—sized Chunl‘dng 8
1 10 100 1000 1 10 100 1000 1 10 100 1000

Response time (ms)

Response time (ms)

Response time (ms)

Fig.10 Analysis of synthetic workload with low deduplication ratio. (a) - (¢) show the response time
CDF results of various read operations from 90% sequential to 10% sequential for complete workloads.
(f) - (h) show the response time CDF results using a set of files accessed only by sequential read during
the experiment to see the exact effects of selective deduplication. Native Fuse-ext2 means the unmodi-
fied Fuse-ext2 file system. The other experiments were conducted under the proposed system based on
the Fuse-ext2 file system.

the I/O monitoring overhead of the proposed system is neg-
ligible from the perspective of read latency.

We also compared response time of the proposed se-
lective deduplication with the big and small chunking meth-
ods. The selective deduplication successfully supports low
response time for sequentially read files. The CDF of the
big chunking and the small chunking methods from Fig-
ure 9-(a) to Figure 9-(e) show almost the same read la-

tency, regardless of the workload. However, the selective
deduplication shows various read latencies depending on the
sequential-read ratio because this method deduplicates files
based on the sequential-read pattern. In the case of the 90%
sequential-read workload, the selective deduplication CDF
is similar to the big chunking CDF (Fig. 9-(a)). In contrast,
in the case of the 10% sequential-read workload (Fig. 9-(e)),
the CDF of the selective deduplication is similar to the CDF

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

of the small chunking method, because 90% of the workload
is random-read files that are deduplicated with small chunk-
ing. However, for the sequential-read-workload files only,
we can still achieve high performance(Fig. 9-(h)) owing to
the characteristics of the selective deduplication. In the case
of the workload with a low deduplication ratio (Fig. 10), the
same trends were shown. This means the selective dedupli-
cation works well, regardless of the deduplication ratio.
Figure 11 shows that the selective deduplication
method effectively controls the trade-off between the dedu-
plication ratio and sequential-read performance. The result
shows that the selective method achieves as high a read
performance as the big chunking method; in addition, it
achieves a higher deduplication ratio than the big chunking
method. The deduplication ratio of the big and small chunk-
ing methods is a fixed value because they do not consider
the workload characteristics. However, the selective method
effectively supports high performance sequential reads. The
workload of 10% sequential read ratio achieves a deduplica-
tion ratio almost equal to the small chunking method. The
throughput for the selective method is similar to the small
chunking method’s results in Fig. 11-(a). This is because

120 80 &
2100 I Zg 2
= 80 . &

\ 50 =
ER § 40 8
< 5]
£ 20 . % 2 3
= . . 10 2
0 N 0o =
S:R S:R S:R S:R S:R
90:10 75:25 50:50 2575 10:90
(a) Result of whole files
120 -
Z 100 - <
=
S 80 - £
< ; &
é 60 N 5
% 40 - s
£ 2 =1 £
S:R S:R S:R S:R S:R
90:10 75:25 50:50 25:75 10:90
(b) Result of files accessed only by sequential read
8 Throughput: Native Fuse-ext2
[Throughput: Big-sized Chunking
mm Throughput: Selective Deduplication
== Throughput: Small-sized Chunking
s%DDRatio: Selective Deduplication
-e-DDRatio: Big-sized Chunking
DDRatio: Small-sized Chunking
Fig.11 Sequential-read throughput versus deduplication ratio for the se-

quentially read files versus deduplication ratio. The bars depict the through-
put and the lines depict the deduplication ratio. In this experiment, we used
the high deduplication ratio workload. The selective deduplication method
achieves a high deduplication ratio and a high read throughput at the same
time. The x-axis” S:R means Sequential:Random ratio.

379

90% of the files are deduplicated using small chunking.
However, as shown in Fig. 11-(b), the selective method suc-
cessfully achieves 97% of the sequential-read performance
of a native file system, and 86% of an ideal deduplication
ratio for the 10% sequential-read-oriented files.

In Fig. 11-(a), the throughput of the proposed method
is quite low in the case of the random workload (i.e., S:R =
25:75 and 10:90). This is because the random-read perfor-
mance depends on the physical distance of the blocks. That
is, if a file is fragmented throughout the whole disk volume,
the random-access performance is also affected. One pos-
sible solution is a container-based approach. If data dedu-
plication is conducted inside a container, as opposed to the
entire volume, then the block distance will be much closer.

5.2.2 Real-World Data Set

We chose two distinct users’ workloads for the real-world
data set: a normal desktop user’s workload and a devel-
oper’s workload. Table 5 describes the characteristics of
each workload and Fig. 12 shows their file size distribution.
For experiment, we copied the whole files of the workloads
into the proposed system and we ran each workload for
two weeks. The desktop user mainly uses web-browser and
word-processor and the developer mainly uses vim editor
and gcc compiler. Table 5 shows the overall results for the
two workloads. The proposed system can achieve almost
the same deduplication ratio as that using small chunking.
Moreover, it also achieves a low sequential-read latency at

Table S Real-world workload description
Workload Real-world workload Real-world workload
#1 #2
Characteristics Desktop User Developer
Mainly used applica- Web-browser, word Vim editor, gcc com-
tions processor piler
Total workload size 42GB 90GB
Operating System Ubuntu 11.10 Ubuntu 10.10
File size distribution 0B-2.2GB 0B-1.6GB
Number of files About 50,000 files About 120,000 files
Files accessed within ~ About 5% About 13%
the last two weeks
Files unmodified fora About 50% About 70%
year
File size distribution
100 —
" Developer

< g0 | Desktop User -

s 60 ¢

=

2 a0

g /

=]

Q 20 t

0
0.00010.001 0.01 0.1 1 10 100 1000
File Size(MB)

Fig.12 CDF of file size distribution for the real-workloads

380

the same time.

Figure 13 shows the CDF results of the sequential-read
response time for all files in the desktop user workload.
We excluded the CDF results of the developer workload
because it showed the same trends. The performance dif-
ference between Native Fuse-ext2 and Not Deduplicated is
almost the same. Therefore, the runtime overhead for I/O
monitoring is negligible in terms of read latency. Since the
entire workload’s sequentiality is low, the selective dedupli-
cation’s CDF result is close to the small chunking method.
However, if we observe the results for the sequential-read-
oriented files, it achieves a low read latency similar to the big
chunking method. Figure 14 depicts the results of sequen-
tially read files (i.e., files that are assigned Rank1). It shows
that the proposed system works well for the sequential-read-
oriented file’s read latency. It is almost the same as the big
chunking method’s read performance.

5.3 Performance Interference over Normal I/O Operations
During offline operations, normal I/O operations may be is-
sued. It is inevitable for performance interference to occur.
In this experiment, we show how the proposed method in-
terferes with the performance of normal I/O operations.

5.3.1

Runtime Overhead

The proposed system has runtime overheads caused by I/O

Table 6 Result of deduplication for the real world workloads
Workload Rank Rank Rank Rank Dedupe. ra- Dedupe. ra- Dedupe. ra-

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

monitoring and queue management. The well-known stan-
dard system utilities and benchmarks in Table 7 are con-
sidered to evaluate the runtime overhead of the proposed
method.

Figure 15 shows the results of the normalized perfor-
mance reduction for the workloads. One can observe that
the disk-I/O-intensive workloads had less than 7% runtime
overhead. Netperf had no performance degradation since it
does not issue disk I/O commands.

5.3.2 Performance Interference by Offline Operation

Because offline operations utilize system idle time, we need
to measure how much idle time is available in a given work-
load. The longer the system is idle, the less is the inter-
ference over normal I/O operations. Many prior studies on
idle time and power saving have shown that there is suffi-
cient idle time. Robertson et. al. showed that more than
600 desktops were always left on out of 700 total [25], and
Agarwal et. al. observed that two-thirds of office PCs were
left on after hours [26]. Many network-connected computers

0(%) 1(%) 2(%) 3 (%) tiousing tiousing tiousing
proposed small chunkbig chunk-
system (%) ing (%) ing (%)

Desktop 2.8 59 4.1 872 143 16.1 11.2
User
Developer 0.9 2.2 12 957 31.1 32.8 17.2

100

100 ——T T T T
T T :./ b od E"J
90 . i -
. /’._‘ D
e=d 3
80 ® o -
o i

~ 10 4 - 8
IS L
N @
5 60 7 o -
5 ’ o
=~ 50 [o E
= P B}
g P o
g 40 P3]]
3 s 7

30 | s E,D -

P oo
20 O .
" a Big-sized chunking
10 | o EB Selective Dedupe ---@---
® 'I' Slmall—sizedI chunking e
0 sl I I I I I I I I I I I I I I
0.01 0.1 1 10 100 1000
Response time (ms)
Fig.14 The response time CDF of sequential read of the workload Desk-

top User only for sequentially read files (i.e., files that are assigned Rank

T ’.fiﬁyw. =
Ll
Bl
Kl
80 —
S
s 60 F i
2
s
E
g 40 E
=
@)
Native Fuse-ext2 —4&—
20 [No Deduplicated ---%--- S
i Big-sized chunking
. .
P Selective Dedupe @
: ""—E’:' Small-sized chunking — -+ —
O B 1 1 i1 1 i1 1 i1 1 1 I
0.0 0.1 1 10 100 1000
Response time (ms)
Fig.13 Response time CDFs of sequential reads for all files of the desk-

top user workload.

D

Table 7 Standard system utilities and benchmarks

Name Description (Characteristics) ~ Workload

tar Archiving system utility (Disk ~ Linux 2.6.24 source
1/O intensive) files

untar Un-archiving system utility — Linux 2.6.24 source
(Disk I/O intensive) files

grep String searching system util- Linux 2.6.24 source
ity(Disk I/O intensive) files

cp File copying system utility Linux 2.6.24 source
(Disk I/O intensive) files

Filebench [23] A benchmark that simulates = Webserver with de-
various type of file based app. fault parameters
(Disk I/O intensive)

Netperf [24] A benchmark that measures Default parame-

network performance (Net-
work I/O intensive)

ters (Local-to-Local
TCP)

PARK and PARK: OFFLINE SELECTIVE DATA DEDUPLICATION FOR PRIMARY STORAGE SYSTEMS

Normalized Performance(%)

100
80
60
40
20
0

& S
X N QQ 19
N ¢

|

NS
Q
)
§$)

Proposed System

&
&
%6&@

H Native Fuse-ext2

Fig.15 Normalized performance reduction for various applications.

60

50 -

§ 40 /
2 30 /
an
=
o
£ 20
=
10
0

1 2 3 4 5 6 7 8

of cores

-=w/o dedup. =+w/ dedup.

Fig.16 Performance interference of the data deduplication thread. The
webserver workload in the Filebench benchmark tool was used, which runs
100 simultaneous I/O threads.

are always on because users want their PCs to maintain the
always-on status, and most of them remain idle [27], [28].
Especially in [27], enterprise desktops remained idle for an
average of 12 hours per day.

In the case of our experiments shown in Table 5, only a
few files were assigned to Rank 1 or Rank 2. That is, only a
few files were targets for offline deduplication because most
files had already been deduplicated by Rank 3 as time went
by. Typically, when a user has 1 TB of storage, the dedupli-
cation targets will be almost 50 GB of files (5%). It takes
less than an hour to deduplicate a 50 GB file set using the
Rank 3 deduplication method.

For the worst-case analysis in performance interference
over normal I/O operations, we considered two distinct ap-
plications from Table 7; the Filebench benchmark to repre-
sent a disk-I/O-intensive workload and the Netperf bench-
mark to represent a non-disk-I/O workload.

Since the offline data deduplication uses a single
thread, we experimented with various numbers of cores to
see the overhead on a multi-core environment.

Figure 16 shows the results of the Filebench bench-

381

2500
—~ 2000 / :
Z 1500
5
5
= 1000
S [
=
H

500

0
1 2 3 4 5 6 7 8
of cores

-=w/0 dedup. =+w/ dedup.

Fig.17 Performance interference results for Netperf, which does not is-
sue disk I/O operations. We ran the offline data deduplication thread while
Netperf was being benchmarked.

mark. It shows that performance interference existed but
was negligible in a multi-core environment, even for an I/O-
intensive workload. Owing to the complexity of the hash
value calculation and comparison, the data deduplication
thread requires considerable CPU time rather than disk I/O.
Thus, the performance interference in a multi-core environ-
ment is negligible, even if the data deduplication thread is
running.

Figure 17 shows the results of the Netperf benchmark.
In the previous experiment, Netperf was not affected by the
runtime overhead of the proposed system since it does not
issue disk I/O. However, its performance was affected by
the proposed system when the offline deduplication thread
was running. However, if we use three or more cores, the
performance reduction is also negligible.

Therefore, whether an application is I/O intensive or
not, the performance interference caused by offline opera-
tions will not be considered a problem in modern computer
systems.

6. Conclusion

In this paper, we proposed a low-overhead selective offline
data deduplication method for primary storage. It selectively
deduplicated data according to the access patterns so that it
supports a low I/O latency and a high data deduplication
ratio at the same time. To accomplish this, we defined four
ranks according to the characteristics of a file; the multi-
queue-based rank management scheme effectively handled
each rank. Through the experiments, we observed that it
achieved a maximum of 86% of an ideal deduplication ratio
and 97% of the sequential-read performance of a native file
system. We also noted that the runtime overhead is less than
7%.

References

[1] L. Dubois and M. Amalsas, “Key considerations as deduplication
evolves into primary storage,” White Paper, IDC, May 2010.

382

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

B. Zhu, K. Li, and R.H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” FAST, pp.1-14, 2008.
C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage,” FAST, pp.197-210,
20009.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble, “Sparse indexing: Large scale, inline deduplication using
sampling and locality,” FAST, pp.111-123, 2009.

W. Dong, F. Douglis, K. Li, R.H. Patterson, S. Reddy, and P.
Shilane, “Tradeoffs in scalable data routing for deduplication clus-
ters,” FAST, pp.15-29, 2011.

D.T. Meyer and W.J. Bolosky, “A study of practical deduplication,”
ACM Transactions on Storage (TOS), vol.7, no.4, p.14, 2012.

W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-locality
based near-exact deduplication scheme with low ram overhead and
high throughput,” USENIX Annual Technical Conference, 2011.

F. Guo and P. Efstathopoulos, “Building a high-performance dedu-
plication system,” USENIX Annual Technical Conference, 2011.
A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” ACM SIGOPS Operating Systems Review,
pp-174-187, ACM, 2001.

K. Srinivasan, T. Bisson, G.R. Goodson, and K. Voruganti, “idedup:
latency-aware, inline data deduplication for primary storage,” FAST,
pp.1-14, 2012.

C. Alvarez, “Netapp deduplication for fas and v-series deployment
and implementation guide,” Technical Report, TR-3505, 2011.
EMC, “Achieving storage efficiency through emc celerra data dedu-
plication,” White paper, March 2010.

IBM, “IBM storage tank — a distributed storage system,” White
paper, Jan. 2002.

A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication-large scale study and system design,”
USENIX Annual Technical Conference, pp.285-296, 2012.

M. Cao, S. Bhattacharya, and T. Tso, “EXT4: The next generation of
EXT?2/3 filesystem,” 2007 Linux Storage & Filesystem Workshop,
2007.

T.J. Gibson and E.L. Miller, “Long-term file activity patterns in a
unix workstation environment,” Proc. 15th IEEE Symposium on
Mass Storage Systems, pp.355-372, 1998.

A.W. Leung, S. Pasupathy, G.R. Goodson, and E.L. Miller, “Mea-
surement and analysis of large-scale network file system workloads,”
USENIX Annual Technical Conference, pp.5-2, 2008.

K. Ramakrishnan, P. Biswas, and R. Karedla, “Analysis of file
i/o traces in commercial computing environments,” ACM SIG-
METRICS Performance Evaluation Review, vol.20, no.1, pp.78-90,
1992.

A.J. Smith, “Analysis of long term file reference patterns for ap-
plication to file migration algorithms,” Software Engineering, IEEE
Trans., no.4, pp.403—417, 1981.

M. Szeredi, “File system in userspace, fuse, http://fuse.sourceforge.
net.”

T.Y.T. R. Card and S. Tweedie, “Design and implementation of the
second extended filesystem,” Amsterdam Linux Conference, 1994.
FIPS Pub., “180-1. secure hash standard,” National Institute of Stan-
dards and Technology, vol.17, 1995.

R. McDougall, “Filebench: Application level file system bench-
mark,”

R. Jones et al., “Netperf: a network performance benchmark,” Infor-
mation Networks Division, Hewlett-Packard Company, 1996.

J.A. Roberson, C.A. Webber, M.C. McWhinney, R.E. Brown,
M.J. Pinckard, and J.F. Busch, “After-hours power status of office
equipment and inventory of miscellaneous plug-load equipment,”
Lawrence Berkeley National Laboratory, 2004.

Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta,
“Somniloquy: Augmenting network interfaces to reduce pc energy
usage,” NSDI, pp.365-380, 2009.

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

[27] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Ratnasamy,
and N. Taft, “Skilled in the art of being idle: Reducing energy waste
in networked systems,” NSDI, pp.381-394, 2009.

[28] T. Das, P. Padala, V.N. Padmanabhan, R. Ramjee, and K.G. Shin,
“Litegreen: Saving energy in networked desktops using virtualiza-
tion,” USENIX Annual Technical Conference, 2010.

Sejin Park received a B.S. degree in soft-
ware engineering from Kumoh National Uni-
versity of Technology, Korea in 2007. He
is currently a Ph.D. candidate in the Depart-
ment of Computer Science and Engineering,
POSTECH, Korea. His research interests in-
clude virtualization technology, storage sys-
tems, and embedded systems

Chanik Park received a B.S. degree in 1983
from Seoul National University, Seoul, Korea,
and an M.S. degree and Ph.D. in 1985 and 1988,
respectively, from Korea Advanced Institute of
Science and Technology. Since 1989, he has
been working for POSTECH, where he is cur-
rently a professor in the Department of Com-
puter Science and Engineering. He was a vis-
iting scholar with the Parallel Systems group in
the IBM Thomas J. Watson Research Center in
1991, and was a visiting professor with the Stor-
age Systems group in the IBM Almaden Research Center in 1999. He has
served at a number of international conferences as a program committee
member. His research interests include storage systems, operating systems,
and virtualization technology.

http://dx.doi.org/10.1145/2078861.2078864
http://dx.doi.org/10.1145/2078861.2078864
http://dx.doi.org/10.1145/502059.502052
http://dx.doi.org/10.1145/502059.502052
http://dx.doi.org/10.1145/502059.502052
http://dx.doi.org/10.1145/149439.133090
http://dx.doi.org/10.1145/149439.133090
http://dx.doi.org/10.1145/149439.133090
http://dx.doi.org/10.1145/149439.133090
http://dx.doi.org/10.1109/tse.1981.230843
http://dx.doi.org/10.1109/tse.1981.230843
http://dx.doi.org/10.1109/tse.1981.230843

