
AIP Advances 6, 115015 (2016); https://doi.org/10.1063/1.4967782 6, 115015

© 2016 Author(s).

The radial dimension of a supersonic jet
expansion from conical nozzle
Cite as: AIP Advances 6, 115015 (2016); https://doi.org/10.1063/1.4967782
Submitted: 16 September 2016 . Accepted: 31 October 2016 . Published Online: 29 November 2016

Guanglong Chen, A. S. Boldarev , Xiaotao Geng, Xingjia Li, Yunjiu Cao, Lili Wang, and Dong Eon Kim

ARTICLES YOU MAY BE INTERESTED IN

Investigation of the on-axis atom number density in the supersonic gas jet under high gas
backing pressure by simulation
AIP Advances 5, 107220 (2015); https://doi.org/10.1063/1.4934675

Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle
Size, and Test Gas
The Journal of Chemical Physics 56, 1793 (1972); https://doi.org/10.1063/1.1677455

Understanding of cluster size deviation by measuring the dimensions of cluster jet from
conical nozzles
AIP Advances 3, 032133 (2013); https://doi.org/10.1063/1.4796187

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/922521658/x01/AIP/HA_ADV_PDF_AQS_2019/HA_ADV_PDF_AQS_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.4967782
https://doi.org/10.1063/1.4967782
https://aip.scitation.org/author/Chen%2C+Guanglong
https://aip.scitation.org/author/Boldarev%2C+A+S
http://orcid.org/0000-0001-8344-646X
https://aip.scitation.org/author/Geng%2C+Xiaotao
https://aip.scitation.org/author/Li%2C+Xingjia
https://aip.scitation.org/author/Cao%2C+Yunjiu
https://aip.scitation.org/author/Wang%2C+Lili
https://aip.scitation.org/author/Kim%2C+Dong+Eon
http://orcid.org/0000-0002-0810-1485
https://doi.org/10.1063/1.4967782
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4967782
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4967782&domain=aip.scitation.org&date_stamp=2016-11-28
https://aip.scitation.org/doi/10.1063/1.4934675
https://aip.scitation.org/doi/10.1063/1.4934675
https://doi.org/10.1063/1.4934675
https://aip.scitation.org/doi/10.1063/1.1677455
https://aip.scitation.org/doi/10.1063/1.1677455
https://doi.org/10.1063/1.1677455
https://aip.scitation.org/doi/10.1063/1.4796187
https://aip.scitation.org/doi/10.1063/1.4796187
https://doi.org/10.1063/1.4796187


AIP ADVANCES 6, 115015 (2016)

The radial dimension of a supersonic jet expansion
from conical nozzle

Guanglong Chen,1 A. S. Boldarev,2 Xiaotao Geng,3 Xingjia Li,1
Yunjiu Cao,1 Lili Wang,1 and Dong Eon Kim3,4,a
1School of Fundamental Studies, Shanghai University of Engineering Science,
Shanghai 201620, China
2Keldysh Institute of Applied Mathematics, Russian Academy of Science, Moscow 125047,
Russia
3Department of Physics & Center for Attosecond Science and Technology, Pohang University
of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
4Max Planck Center for Attosecond Science, Max Planck POSTECH/KOREA Res. Init., Pohang,
Gyeongbuk 37673, South Korea

(Received 16 September 2016; accepted 31 October 2016; published online 28 November 2016)

In a laser-cluster interaction experiment, the radial dimension of a supersonic gas jet
is an important parameter for the characterization of interaction volume. It is noted
that due to the lateral gas expansion, the diameter of a supersonic gas jet is larger
than the idealized diameter of a gas jet from a conical nozzle. In this work the effect
of the lateral expansion on the radial dimension of gas jet was investigated by sim-
ulations. Based on the simulation results, the diameter of gas jet l was compared in
detail with the corresponding diameter lT in the idealized straight streamline model
and the diameter lH at a half of maximum atom density of gas jet. The results reveal
how the deviation of l from lT (lH ) changes with respect to the opening angles of
conical nozzles, the heights above the nozzle, the nozzle lengths and the gas backing
pressures. It is found that the diameter of gas jet l is close to the idealized diameter
lT and lH in the case where a long conical nozzle with a large opening angle is used
under a low gas backing pressure. In this case, the effect of the lateral expansion is
so weak that the edge of gas jet becomes sharp and the radial distribution of atom
density in gas jet tends to be uniform. The results could be useful for the character-
ization of a supersonic gas jet. © 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4967782]

I. INTRODUCTION

A clustered-gas jet has been widely used in the studies of laser pulse interaction with matter,
e.g., table-top nuclear fusion experiment1,2 plasma waveguide generation.3,4 The production of a
gas jet and its characterization have attracted interests and been extensively studied.5–19 Usually, a
supersonic clustered gas jet can be produced by the adiabatic expansion of gas under a high backing
pressure through a conical nozzle into vacuum. The dimension of a gas jet is an important parameter
for the determination of interaction length.4,20 Based on the idealized straight streamline model,
the expansion angle of a supersonic gas jet is equal to the opening angle of a conical nozzle. Thus
the idealized diameter of gas jet from a conical nozzle can be obtained by following the nozzle’s
geometric structure. Unfortunately, due to the lateral gas expansion into vacuum, the diameter of a
gas jet will be larger than the idealized one.8,21,22 Thus it is important to know how the lateral gas
expansion makes effects on the radial dimension of a supersonic gas jet. In this work, a large number
of simulations about supersonic gas jet in case of a conical nozzle with a throat diameter of 0.5 mm
were made using the Boldarev’s 2D model.18 Eighteen cases were considered in simulations: six
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nozzle lengths L of 5, 10, 15, 20, 25 and 30 mm, and three opening angles for each nozzle length.
For each nozzle the diameters of gas jets at sixteen different heights above the nozzle exit were
investigated under five different gas backing pressures (P0=10, 20, 30, 40 and 50 bars). Firstly we
made detailed comparisons between the idealized diameter lT and the simulated diameter l of gas
jet for all conical nozzles. To further investigate the effect of the lateral expansion on gas jet, the
diameter lH of gas jet at a half of its maximum atom density is also compared with the diameter of
gas jet. In this work, the ratio of simulated diameter to that from the straight streamline model of
gas jet is introduced to denote the deviation between them. Furthermore the ratio of the diameter at a
half maximum atom density to the diameter of gas jet was calculated to investigate the radial density
distribution of gas jet. It is interesting to find that both the ratios are related to the nozzle length and
the gas backing pressure besides the opening angle of conical nozzle and the height above the nozzle.
The dependence of the diameter ratio on these parameters is similar to that of the on-axis atom density
on these parameters.21,22 Due to the lateral expansion, the diameters l, lT and lH are usually different.
They tend to be the same only when the conical nozzle with a long nozzle length and a large opening
angle is used under a low backing pressure. In other words, a long conical nozzle of a large opening
angle could be used to produce a supersonic gas jet with the uniform radial atom density distribution,
even at high gas backing pressure. The results could be helpful for the characterization of a gas jet in
the study of laser-cluster interaction.

II. THE RADIAL DIAMETER RATIO OF GAS JET

Because there is no effect of the lateral gas expansion in the straight streamline model, the ratio
of the gas jet dimension from simulation to that in the straight streamline model can be used to study
the effect of the lateral expansion. Firstly the diameter ratio η is defined as η = l/lT, where l is the
simulation diameter of gas jet and lT is that expected by the straight streamline model. Also the other
diameter ratio ηH is defined as ηH = lH/l, where lH is the diameter of gas jet, at which the atom density
is a half of the maximum atom density. This work mainly concerns about the variation of these two
diameter ratios for eighteen conical nozzles.

The idealized diameter of a gas jet from a conical nozzle can be obtained based on the idealized
straight streamline model. Figure 1 shows its schematic diagram for the streamline of a gas jet into
vacuum from a conical nozzle. Form Fig. 1, the idealized diameter of gas flow lT can be given by the
expression lT = 2 (L + h) tan α+ d, where L is the length of the conical nozzle, h the height above the
nozzle exit and d, α the throat diameter and the half opening angle of the conical nozzle, respectively.
It is clear that the idealized diameter is related to the opening angle, the height and the nozzle length.

FIG. 1. The schematic diagrams for the streamline of a gas jet into vacuum from a conical nozzle based on the idealized
straight streamline model.
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The simulation diameter of gas jet is obtained from the simulation results about argon gas flow
using e 2D hydrodynamic model described in detail in Ref. 18. The capability of this model for
the spatial distribution of gas density has been demonstrated.16,18,19 The 2D hydrodynamic model
reproduces the spatial structure of the gas jet, including the rarefaction waves at the edges of the
jet, and it is possible to evaluate the diameter on the base of the simulated results by introducing a
threshold density value. Similarly to the definition of gas diameter in Ref. 22, the calculated diameter
of gas jet, l, is, in this work, defined as that of the region where the atom density is higher than
3% of the maximum atom density. The diameters of a gas jet at sixteen heights above the nozzle
are obtained. Meanwhile, the diameter of the gas jet lH, at which the atom density is a half of the
maximum atom density, is also obtained based on the simulation results.

III. RESULTS AND DISCUSSIONS

For analysis of the diameter of a gas jet, we calculated all the diameters from the atom density
profiles based on the simulation results. As expected, it is found that the bigger the opening angle or
the higher the height is, the larger the diameter of gas jet is for a given nozzle length. Moreover, it
is also noted that the diameter increases with the increase of the nozzle length L for a given opening
angle. For example, the diameter is about 2.8 mm at h =3.0 mm for the conical nozzle of L=5mm,
α = 8.5◦, while it is about 6.2 mm for the conical nozzle of L=30 mm, α = 8.5◦. All these results can
be easily understood based on the geometrical structure of conical nozzles. For a conical nozzle, the
diameter of nozzle exit will become larger when the opening angle and the nozzle length increase. The
diameter of a gas jet should then increase, which is in agreement with the results from the idealized
straight streamline model.

The detailed comparison between the simulation diameter and the diameter in the straight stream-
line model is made. The diameter ratios η for all conical nozzles and for all heights are calculated
and listed in Table I. From Table I, it is clearly found that for any nozzle length, (1) the diameter
ratio is always larger than 1. That is to say, due to the lateral gas expansion, the diameter of a gas jet

TABLE I. The diameter ratio η of gas jet at the heights from 1.8 mm to 4.8 mm for the eighteen conical nozzles under the
backing pressure of 50 bars.

Height (mm)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

8.5o 1.67 1.73 1.78 1.83 1.88 1.92 1.96 2.01 2.05 2.08 2.12 2.15 2.19 2.22 2.26 2.29
L=5 mm 14.0o 1.46 1.49 1.52 1.56 1.59 1.62 1.65 1.68 1.70 1.73 1.76 1.76 – – – –

19.3o 1.31 1.34 1.36 1.39 1.39 1.40 1.42 1.44 – – – – – – – –

8.5o 1.39 1.42 1.46 1.49 1.52 1.56 1.59 1.62 1.65 1.68 1.71 1.74 1.76 1.79 1.81 1.84
L=10 mm 14.0o 1.23 1.25 1.27 1.29 1.30 1.32 1.34 1.37 1.38 1.40 1.42 1.44 1.45 1.47 1.48 1.49

19.3o 1.15 1.17 1.18 1.19 1.21 1.22 1.23 1.24 1.26 1.27 1.28 1.29 1.31 1.32 1.33 1.34

8.5o 1.26 1.28 1.30 1.32 1.34 1.37 1.39 1.41 1.43 1.45 1.48 1.50 1.52 1.54 1.56 1.57
L=15 mm 14.0o 1.15 1.16 1.17 1.19 1.20 1.21 1.23 1.24 1.25 1.26 1.27 1.29 1.30 1.31 1.33 1.34

19.3o 1.10 1.11 1.12 1.12 1.13 1.14 1.14 1.15 1.15 1.16 1.16 1.17 1.18 1.18 1.19 1.19

8.5o 1.19 1.21 1.23 1.24 1.26 1.28 1.30 1.31 1.33 1.35 1.37 1.38 1.40 1.42 1.44 1.45
L=20 mm 14.0o 1.11 1.12 1.13 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.20 1.21 1.22 1.23 1.24

19.3o 1.07 1.07 1.08 1.08 1.08 1.09 1.09 1.10 1.11 1.11 1.11 1.11 1.12 1.12 1.12 1.13

8.5o 1.14 1.15 1.17 1.19 1.20 1.21 1.23 1.24 1.26 1.27 1.28 1.30 1.31 1.32 1.34 1.35
L=25 mm 14.0o 1.08 1.09 1.10 1.10 1.11 1.12 1.12 1.13 1.14 1.15 1.15 1.16 1.17 1.17 1.17 1.18

19.3o 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 1.08 1.08 1.08 1.08 1.09 1.09

8.5o 1.12 1.13 1.14 1.15 1.16 1.17 1.19 1.19 1.21 1.22 1.23 1.24 1.25 1.27 1.27 1.28
L=30 mm 14.0o 1.06 1.07 1.06 1.08 1.09 1.09 1.09 1.10 1.10 1.11 1.11 1.12 1.13 1.13 1.13 1.14

19.3o 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06 1.05 1.05 1.05 1.06
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is always larger than the one predicted by the idealized straight streamline model. (2) The diameter
ratio generally increases with the increase of the height and (3) the diameter ratio generally decreases
with the increase of the opening angle. For example, the diameter ratios are 1.39, 1.23, and 1.15,
for the opening angle of 8.5◦, 14.0◦, and 19.3◦, respectively, at a height of 1.8 mm and for a nozzle
length of 10 mm, while the diameter ratios are 1.84, 1.49, and 1.34 at the height of 4.8 mm for
the same nozzle. These observations clearly say that both the diameter and the diameter ratio are
related to the height and the opening angle for any nozzle. These results are similar to the experi-
mental results discussed for the conical nozzle with L = 5 mm in Ref. 22. It is also interesting to
find from Table I that the diameter ratio is related to the nozzle length: it decreases with the increase
of the nozzle length for the same height and opening angle. For example, the diameter ratios are
1.88, 1.52, 1.34, 1.26, 1.20 and 1.16 for a nozzle length of 5, 10, 15, 20, 25 and 30 mm, respec-
tively at a height of 2.6 mm and a opening angle of 8.5◦. Because the diameter ratio indicates the
deviation from the prediction by the streamline model, it is concluded that the deviation of diameter
becomes small for the conical nozzle with a big opening angle and a long nozzle length at a low
height.

To more clearly show the radial spatial structure of the supersonic gas jet, the diameter ratios
ηH for all conical nozzles and for all heights were calculated and listed in Table II. Table II, clearly
shows that, similar to the diameter ratios η, ηH is also related to the height, the opening angle and the
nozzle length for any nozzle. However, it is noted that ηH shows a different dependence from η. It
generally increases with the increase of the opening angle and the nozzle length, but decreases with
the increase of the height. For example, ηH are 0.69, 0.80, and 0.84 for an opening angle of 8.5◦,
14.0◦, and 19.3◦ respectively, at a height of 1.8 mm and a nozzle length of 10 mm, while the diameter
ratios are 0.47, 0.62, and 0.69 at a height of 4.8 mm for the same nozzle. Meanwhile, it is noted that
the diameter ratios are 0.89 at a height of 1.8 mm and for a nozzle length of 30 mm with an opening
angle of 8.5◦. It is noted that the dependence of ηH on the height is similar to the experimental result
for the nozzle with L =5 mm in Fig.4 of Ref. 22. Because the ratio ηH denotes the deviation of lH

from l, the smaller ηH corresponds to the weaker lateral expansion and the sharper edge of gas jet.

TABLE II. The diameter ratio ηH of gas jet at the heights from 1.8 mm to 4.8 mm for the eighteen conical nozzles under the
backing pressure of 50 bars.

Height (mm)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

8.5o 0.52 0.50 0.48 0.46 0.45 0.43 0.42 0.41 0.40 0.38 0.37 0.36 0.34 0.33 0.32 0.32
L=5 mm 14.0o 0.63 0.62 0.60 0.58 0.56 0.55 0.54 0.53 0.51 0.50 0.49 0.49 – – – –

19.3o 0.70 0.68 0.66 0.64 0.63 0.61 0.60 0.58 – – – – – – – –

8.5o 0.69 0.67 0.65 0.63 0.62 0.60 0.58 0.57 0.56 0.54 0.53 0.52 0.51 0.49 0.48 0.47
L=10 mm 14.0o 0.80 0.78 0.77 0.75 0.74 0.73 0.71 0.70 0.69 0.68 0.66 0.66 0.65 0.64 0.63 0.62

19.3o 0.84 0.83 0.82 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.72 0.71 0.70 0.69

8.5o 0.78 0.77 0.75 0.74 0.72 0.70 0.69 0.68 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59
L=15 mm 14.0o 0.86 0.85 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.74 0.73 0.72 0.71

19.3o 0.89 0.89 0.88 0.87 0.87 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.82 0.82 0.81 0.81

8.5o 0.83 0.81 0.80 0.78 0.77 0.76 0.75 0.73 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65
L=20 mm 14.0o 0.89 0.89 0.88 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.81 0.81 0.80 0.80 0.79 0.78

19.3o 0.93 0.92 0.92 0.91 0.91 0.91 0.90 0.89 0.89 0.88 0.88 0.88 0.88 0.87 0.87 0.86

8.5o 0.86 0.85 0.84 0.82 0.82 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70
L=25 mm 14.0o 0.92 0.91 0.90 0.90 0.89 0.88 0.88 0.87 0.86 0.86 0.85 0.84 0.84 0.84 0.83 0.83

19.3o 0.95 0.94 0.94 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.90 0.90

8.5o 0.89 0.88 0.87 0.85 0.85 0.84 0.82 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.76 0.75
L=30 mm 14.0o 0.94 0.93 0.93 0.92 0.91 0.91 0.91 0.90 0.90 0.89 0.89 0.88 0.87 0.87 0.87 0.86

19.3o 0.97 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.93
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FIG. 2. Comparison of diameter ratios η (a) and ηH (b) at different heights above the nozzle for two nozzle lengths (L=5 mm
and 30 mm) and three opening angles (α= 8.5◦, 14.0◦and 19.3◦), respectively.

From Table I and Table II, it can be found that η and ηH are close to 1 only when the height is
low for a nozzle with a long length and a big opening angle. The small η indicates that the deviation
of l from lT is small, which mean the weaker rarefaction waves at the edge of jet. Meanwhile, when
the diameter ratio ηH is close to 1, lH will be equal to l, which means a sharp edge of the jet profile,
i.e., the atom density in gas jet could be radially uniform. Thus it can be concluded that a conical
nozzle with a long length and a big opening angle could be helpful to produce a supersonic gas jet
with a radially uniform distribution of atom density, especially at a low height. These results can be
understood as below: Because the lateral expansion becomes weak with the increase of the nozzle
length and the opening angle,21 it is reasonable that the lH become to be close to l, and the radial
distribution tend to be uniform for a nozzle with a long length and a big opening angle at a given
height. Meanwhile, as for the height dependence, because the increase of the height results in the

TABLE III. The diameter ratios η of a gas jet at the height of 2.4 mm under five gas backing pressures for the eighteen conical
nozzles.

P0 (bars)

10 20 30 40 50

8.5o 1.49 1.53 1.62 1.79 1.83
L=5 mm 14.0o – 1.31 1.30 1.57 1.56

19.3o 1.12 – – 1.38 1.39

8.5o 1.25 1.44 – 1.49 1.49
L=10 mm 14.0o 1.14 1.14 1.18 1.29 1.29

19.3o 1.09 1.10 1.10 1.18 1.19

8.5o 1.16 1.17 1.25 1.32 1.32
L=15 mm 14.0o 1.09 1.09 1.12 1.18 1.19

19.3o 1.07 1.07 – 1.11 1.12

8.5o 1.12 1.12 1.23 1.24 1.24
L=20 mm 14.0o 1.07 1.07 1.10 1.13 1.13

19.3o – – 1.05 1.08 1.08

8.5o 1.09 1.09 1.16 1.19 1.19
L=25 mm 14.0o 1.05 1.05 1.07 1.10 1.10

19.3o – – 1.04 1.06 1.06

8.5o 1.08 1.08 1.15 1.15 1.15
L=30 mm 14.0o – 1.05 1.06 1.08 1.08

19.3o – – 1.03 1.04 1.04
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increase of the lateral expansion time, the deviation of lH from l or the deviation of l from lT will
increase as the height.

It is necessary to note that though the ratio is related to the height and the opening angle, the
dependence is different for different nozzle lengths. To illustrate the dependence more clearly, both
η and ηH for the nozzles with L=5 mm and 30 mm were plotted together in Figs.2(a) and (b). From
Fig.2(a), it is clearly seen that for the nozzle with L=30 mm, the dependence of η on the height and
the opening angle is weaker and the change of the ratio is not so large as that for the nozzle with
L=5 mm. From Fig.2(b), the similar results about ηH can be found. This means that the diameter of
gas jet is close to that predicted by the idealized model or the dimension at a half maximum for the
nozzle with a longer length, even though the nozzle has the small opening angle. It can be understood
from the fact that the lateral expansion would become weaker with respect to the axis expansion with
the increase of the nozzle length.

To investigate the dependence of the diameter ratios on a gas backing pressure, we calculated
the diameter ratios for eighteen nozzles under a backing pressure of 10, 20, 30, 40 and 50 bars,
respectively. As examples, the results about η and ηH, at a height of 2.4 mm are listed in Table III
and Table IV. From Table III and Table IV, it is found that (1) the behavior of the diameter ratio
under other backing pressures is similar to that under a backing pressure of 50 bars, i.,e., the diameter
ratio is bigger (η) or smaller (ηH) for nozzles with smaller opening angles and shorter nozzle lengths.
(2) The diameter ratio increases (η) or decreases (ηH) when the gas backing pressure changes from
10 bars to 50 bars for any nozzle. This means that the diameter ratio is dependent on the gas backing
pressure. (3) The diameter ratio indicates the smaller variation for a long nozzle when the gas backing
pressure increases. For example, the ratio η (ηH) changes from 1.49 (0.61) to 1.83 (0.47) for a nozzle
length of 5 mm, while it only changes from 1.08 (0.93) to 1.15 (0.86) for a nozzle length of 30 mm
when the opening angle is 8.5◦. This results from the fact that the lateral expansion becomes strong
as the gas expands from a conical nozzle under the high backing pressure.21 This fact cannot be
explained in the frames of the idealized straight streamline model, since this model provides a fixed
structure of the jet for a given nozzle geometry (and a given gas species), which is independent of a
gas backing pressure.

TABLE IV. The diameter ratios ηH of a gas jet at the height of 2.4 mm under five gas backing pressures for the eighteen
conical nozzles.

P0 (bars)

10 20 30 40 50

8.5o 0.61 0.59 0.59 0.45 0.47
L=5 mm 14.0o – 0.70 0.78 0.59 0.58

19.3o 0.84 – – 0.67 0.64

8.5o 0.79 – – 0.64 0.63
L=10 mm 14.0o 0.87 0.87 0.84 0.75 0.75

19.3o 0.91 0.90 0.89 0.81 0.80

8.5o 0.86 0.83 0.78 0.74 0.74
L=15 mm 14.0o 0.91 0.91 0.89 0.83 0.82

19.3o 0.93 0.93 – 0.88 0.87

8.5o 0.90 0.89 0.80 0.79 0.79
L=20 mm 14.0o 0.93 0.93 0.91 0.86 0.87

19.3o – – 0.94 0.91 0.91

8.5o 0.92 0.91 0.85 0.83 0.83
L=25 mm 14.0o 0.95 0.95 0.93 0.90 0.90

19.3o – – 0.95 0.93 0.94

8.5o 0.93 0.92 0.86 0.86 0.86
L=30 mm 14.0o – 0.94 0.94 0.92 0.92

19.3o – – 0.96 0.95 0.96
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It is noted that the relation between lT and lH can be obtained using η and ηH. From discussion
above, the lH is close to lT at a low height and low gas backing pressure for a long conical nozzle and
a big opening angle. This result implies that lT can be used to estimate lH in this case.

IV. CONCLUSIONS

In conclusions, by simulations, we investigated the dependence of the diameter ratio of a gas
jet on the opening angle, the nozzle length of a conical nozzle, the height above the nozzle and the
gas backing pressure. All the results indicate that the diameter ratio is related to these parameters.
Because the diameter ratio indicates the deviation of the diameter of a gas jet from that predicted
by the idealized diameter or the diameter at half maximum atom density, we can conclude that the
three diameters trend to be equal to each other (i.e., the diameter ratio is close to 1.0) only when long
conical nozzles with a large opening angle are used under a low gas backing pressure and a small
height. In this case, a supersonic gas jet with a uniform radial distribution of an atom density could
be produced, i.e., the supersonic gas jet has a relative sharp edge, in which the idealized diameter
(lT) in straight streamline model can be almost equal to the diameter l or the diameter lH of gas jet.
This kind of gas jet with a uniform radial atom density distribution will be useful in the laser-cluster
interaction experiments.
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C. Bostedt, and T. Möller, J. Chem. Phys. 141, 044306 (2014).
13 K. Y. Kim, V. Kumarappan, and H. M. Michberg, Appl. Phys. Lett. 83, 3210 (2003).
14 F. M. DeArmond, J. Suelzer, and M. F. Masters, J. Appl. Phys. 103, 093509 (2008).
15 X. Gao, X. Wang, B. Shim, A. V. Arefiev, R. Korzekwa, and M. C. Downer, Appl. Phys. Lett. 100, 064101 (2012).
16 S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, A. S. Boldarev,

and V. A. Gasilov, Appl. Phys. Lett. 102, 164103 (2013).
17 H. Y. Lu, G. Q. Ni, R. X. Li, and Z. Z. Xu, J. Chem. Phys. 132, 124303 (2010).
18 F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev, and V. A. Gasilov, Phys. Rev. A 68, 023201 (2003).
19 S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, A. S. Boldarev,

and V. A. Gasilov, Opt. Express 21, 20656 (2013).
20 H. Y. Li, J. S. Liu, C. Wang, G. Q. Ni, R. X. Li, and Z. Z. Xu, Phys. Rev. A 74, 023201 (2006).
21 G. Chen, A. S. Boldarev, X. Geng, Y. Xu, Y. Cao, Y. Mi, X. Zhang, L. Wang, and D. E. Kim, AIP Advances 5, 107220

(2015).
22 G. Chen, X. Geng, H. Xu, Y. Mi, X. Zhang, L. Wang, and D. E. Kim, AIP Advances 3, 032133 (2013).

http://dx.doi.org/10.1038/19037
http://dx.doi.org/10.1103/PhysRevE.92.013102
http://dx.doi.org/10.1364/OL.23.000322
http://dx.doi.org/10.1364/OE.19.015919
http://dx.doi.org/10.1063/1.1677455
http://dx.doi.org/10.1016/0039-6028(81)90187-4
http://dx.doi.org/10.1063/1.4931374
http://dx.doi.org/10.1155/2014/636042
http://dx.doi.org/10.1140/epjti/s40485-015-0027-5
http://dx.doi.org/10.1021/jp9814810
http://dx.doi.org/10.1063/1.1568331
http://dx.doi.org/10.1063/1.4890323
http://dx.doi.org/10.1063/1.1618017
http://dx.doi.org/10.1063/1.2903552
http://dx.doi.org/10.1063/1.3683543
http://dx.doi.org/10.1063/1.4802915
http://dx.doi.org/10.1063/1.3356024
http://dx.doi.org/10.1103/PhysRevA.68.023201
http://dx.doi.org/10.1364/OE.21.020656
http://dx.doi.org/10.1103/PhysRevA.74.023201
http://dx.doi.org/10.1063/1.4934675
http://dx.doi.org/10.1063/1.4796187

