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1 Introduction

M5-brane is one of the most mysterious objects in M-theory [1, 2]. M2- and M5-branes,

which are two important ingredients of M-theory, are known to support strange numbers

of light degrees of freedom on their worldvolumes [3]. Although the N3/2 scalings for N

coincident M2-branes have been recently understood in some detail [4, 5], the N3 scalings

for N M5-branes are not very solidly understood in a microscopic way.

M-theory is related to 10d string theories by having an extra direction emerging in

strongly coupled string theories [1, 2], being a circle for the type IIA strings. This relation

is mainly supported by identifying D0-brane states with the Kaluza-Klein states of M-

theory along the circle. Such a relation could still hold in Euclidean type IIA/M-theories

on various curved manifolds with a circle factor.

The relation between type IIA/M-theories via a circle compactification also yields a

similar relation between the D4-brane and M5-brane theories. On M5-branes probing flat

transverse space or its Z2 orbifold, there live 6d (2, 0) superconformal theories associated

with An or Dn type gauge groups. The full set of known 6d (2, 0) theories actually come in

an ADE classification [6]. The microscopic details of these theories are largely unknown.

Dimensional reductions of these 6d theories along a small circle admit descriptions by

5d maximally supersymmetric Yang-Mills theories. Naively, the resulting 5d theory is

supposed to be a dimensional reduction, after which one expects that information on the

6d physics is lost. There appeared some evidence that careful studies of the strong-coupling
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or non-perturbative physics of the 5d theory let us extract the nontrivial information on

the 6d theory compactified on the circle [7–10]. In Minkowskian dynamics, crucial roles

are played by the instanton solitons in the 5d theory, similar to the way in which type IIA

D0-branes are crucial for reconstructing the KK states of the extra circle. In particular, in

BPS sectors, it has been shown in detail that the instanton partition function yields various

(expected or novel) results for 6d (2, 0) theory compactified on a circle [11]: this includes the

rigorous proof of the uniqueness of U(1) multi-instanton bound states, discovery of novel

self-dual string bound states which explains some enhancements of degrees of freedom in

the Coulomb branch, the study of the symmetric phase instanton index and its agreement

with the DLCQ gravity dual index on AdS7 × S4.

In this paper, we apply the same idea to the 6d theory on S5 × S1, and study them

from 5d gauge theories on S5. As the 5d gauge theories (at least apparently) look non-

renormalizable, there is a general issue on how to make quantum calculations sensible.

There appeared proposals on possible finiteness of maximally supersymmetric theories in

5d [9, 10]. (See also [12] for an earlier work.) But even if this is true, having a good control

over all the 5d quantum fluctuations would be generally difficult. Just as those considered

in [11], there are many supersymmetric observables which rely less sensitively on quantum

fluctuations. We expect that the BPS observables that we consider in this paper would also

be safe: in fact, based on localization, we are led to consider a supersymmetric path integral

which is secretly Gaussian, for which the UV divergence issue is almost trivial. So we base

our studies on a much more modest but solidly testable proposal that 5d supersymmetric

Yang-Mills theory describes 6d (2, 0) theory compactified on a circle at least in the BPS

sector. Note that this proposal is not necessarily restricted to maximal SYM: although

we focus on maximal SYM in this paper, we generalize the study to less supersymmetric

theories in a follow up work [13].

The (2, 0) theory on S5×S1 is interesting for various reasons. Firstly, any 6d CFT on

flat spacetime can be put on S5×R by radial quantization, where R is the (Euclidean) time

direction. Depending on how one compactifies the time direction to a circle, the resulting

partition function will be an appropriate index which counts BPS states of this theory. In

particular, S5 ×R is the conformal boundary of global AdS7, so that the large N limits (if

available) of these theories could have gravity duals on global AdS7 [14–16]. AdS7/CFT6

is perhaps the least understood duality among various AdS/CFT proposals, on which we

can shed lights with our studies.

When the circle size is small, we are naturally led to study the Euclidean supersym-

metric Yang-Mills theory on the 5-sphere. For the ADE cases, we study the 5d gauge

theories with corresponding gauge groups. For An and Dn cases, they can be understood

intuitively as living on ‘Euclidean D4-branes’ wrapping the 5-sphere, if one reduces the 6d

theory on the circle interpreted as the M-theory circle.

We first construct and calculate the partition function of a Yang-Mills quantum field

theory on S5 preserving 16 real SUSY. To motivate the construction from the 6d (2, 0)

theory, we first consider the Abelian 6d (2, 0) theory. As this free theory on R
6 is conformal,

one can radially quantize it to obtain a theory on S5 × R. The 32 Killing spinors satisfy
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one of the two Killing spinor equations:

∇M ǫ = ± 1

2r
ΓMΓτ ǫ , (1.1)

where r is the radius of S5 and τ is the Euclidean time. Since the dependence of ǫ on τ

is e±
1
2r

τ , one cannot naively compactify this theory preserving all 32 SUSY. Instead, one

can introduce an R-symmetry twist (or a Scherk-Schwarz reduction) to obtain a theory

on S5 × S1 with as much as 16 SUSY. This can be done by picking an SO(2) ⊂ SO(5)

R-symmetry. The resulting theory after the 5d reduction, with tensor-vector dualization,

can be straightforwardly generalized to non-Abelian theories with arbitrary gauge group.

Due to the R-symmetry twist, the maximal SYM on S5 preserves only SO(2)×SO(3) part

of SO(5) R-symmetry.

We calculate and study the partition function of this maximal SYM on S5. We employ

the localization technique to obtain the perturbative contribution given by a simple matrix

integral. We also suggest a simple non-perturbative correction, which is proved in a follow-

up paper [13]. The M-theory interpretation demands us to relate the 5d gauge coupling

gYM and the circle radius r1 as
4π2

g2YM

=
1

r1
=

2π

rβ
, (1.2)

where β is the (dimensionless) inverse ‘temperature’ like chemical potential. In flat

Minkowskian space, this is relating the instanton (or D0-brane) mass with the Kaluza-

Klein mass on the extra circle. With this interpretation, and also with the R-symmetry

twist on which we elaborate in section 2, the 5-sphere partition function is identified as

an index of the 6d theory with the chemical potential β. This index counts BPS states on

S5 × R, or local BPS operators on R
6. The fact that our 5d partition function takes the

form of an index, with all coefficients being integers when expanded in the fugacity e−β ,

strongly supports that the 5d Yang-Mills theory is nontrivially capturing the 6d physics.

In the later part of this paper, we mostly consider the U(N) gauge theory in 5d, to study

the AN−1 type (2, 0) theory in 6d times a decoupled free sector. However, we comment on

some important general features for all ADE gauge groups, and also on possible fate of

the theories with non-ADE gauge groups, including BCFG.

Our partition function captures two different features of the 6d theory. Firstly, it tells

us the degeneracy information of the BPS states of the 6d theory. Secondly, and perhaps

more interestingly, it contains the information on the 6d vacuum on S5 × R. The unique

vacuum of the radially quantized 6d theory has nonzero Casimir energy. In the large N

limit of the SU(N) and SO(2N) cases, the AdS7 gravity dual predicts its value to be

nonzero and proportional to N3 [17]. From the gravity side, this is basically the same

N3 appearing in all AdS7 gravity calculations, coming from ℓ5

G7
combination of the AdS7

radius ℓ and 7d Newton constant G7. Our partition function captures the ‘index version’

of the vacuum Casimir energy, which also exhibits the N3 scaling in the large N limit. See

section 3 and appendix B for what we mean by the ‘index Casimir energy.’ The difference

between the normal Casimir energy of CFT and ours is that ours uses an unconventional

regularization for the Casimir energy, which is naturally chosen by the definition of the

index we consider.
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Curiously, the perturbative partition functions of our theories with 16 SUSY on S5

turn out to take identical forms as the partition functions of pure Chern-Simons theories

on S3, when we appropriately identify the Chern-Simons coupling constant with the 5d

coupling constant.

Upon adding a simple non-perturbative correction to the above perturbative part, we

also show that the U(N) index completely agrees with the supergravity index on AdS7×S4

in the large N limit. Also, our finite N index is a function which appears in various different

physical/mathematical contexts. See section 3.2 for the details.

We also provide a matrix integral form of the perturbative part of a generalized parti-

tion function, which we suppose to be a more refined 6d index with two chemical potentials.

For this we study a SYM theory on S5 preserving 8 SUSY, which can be regarded as a

Scherk-Schwarz reduction of the 6d (2, 0) theory with more general U(1) ⊂ SO(5) embed-

ding. In one limit, we suggest that the generalized partition function captures the spectrum

of half-BPS states of the 6d theory, whose general structures are explored, for instance,

in [18].

The remaining part of this paper is organized as follows. In section 2, we motivate

our theory on S5 by taking a Scherk-Schwarz reduction of the Abelian 6d (2, 0) theory.

The resulting 5d theory is generalized to a non-Abelian theory on S5. In section 3, we

calculate the perturbative partition function and show that it takes the same form as the

Chern-Simons partition function on S3. Adding non-perturbative corrections, we study

the index Casimir energy, the large N index and the dual gravity index. We finally present

a matrix integral form of a generalized partition function which we expect to be a more

refined 6d index. Appendix A explains the scalar/spinor/vector spherical harmonics on S5,

as well as some path integral calculations. Appendix B explains that the superconformal

indices (of which our partition function is a special sort) in various dimensions capture the

index version of Casimir energies and study their properties.

As we were finalizing the preparation of this manuscript, we received [19] which partly

overlaps with our section 3.3. Their result is a special case of ours in section 3.3 with

∆ = 1
2 .

2 Maximal SYM on the 5-sphere

2.1 Motivation from Abelian theories

As a motivation, we would like to reduce the radially quantized Abelian (2, 0) theory on a

circle to obtain a theory on S5 with 16 SUSY. The resulting 5d theory will be generalized

to non-Abelian theories in section 2.2.

The 32 Killing spinors on Minkowskian S5 × R satisfy one of the two equations

∇M ǫ± = ± i

2r
ΓMΓ0ǫ± , (2.1)

where M = 0, 1, 2, 3, 4, 5, and r is the radius of S5. Taking M = 0, one finds the time

dependence

ǫ±(τ) = e∓
i
2r

tǫ0± . (2.2)
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The spinors with two signs yield Poincare/conformal supercharges, respectively, which

should be suitably complex conjugate to each other.

We first consider the properties of our spinors in some detail. The matter and Killing

spinors of the 6d (2, 0) theory are all spinors in spacetime SO(5, 1) (or SO(6) in Euclidean

theories) and the SO(5)R R-symmetry. The 8× 8 gamma matrices in 6d can be written in

terms of the 4× 4 5d gamma matrices γµ (which shall be useful after a circle reduction) as

Γµ = γµ ⊗ σ1 , Γτ = 14 ⊗ σ2 (2.3)

on a Euclidean space. Multiplication of factor i to Γτ will convert it to the Lorentzian

gamma matrices. The 6d chirality matrix Γ123456 = iσ3 demands that a chiral spinor have

σ3 = +1 eigenvalue. To be concrete, we take the following representation of the 5d gamma

matrices in this paper (σ1,2,3 are Pauli matrices):

γ1,2,3 = σ1,2,3 ⊗ σ1 , γ4 = 12 ⊗ σ2 , γ5 = −12 ⊗ σ3 . (2.4)

These satisfy γ12345 = 1. Also, for the internal SO(5) spinors, we introduce the 4 × 4

gamma matrices γ̂I (I = 1, 2, 3, 4, 5) as

γ̂1 = σ1⊗σ1 , γ̂2 = σ2⊗σ1 , γ̂4 = σ3⊗σ1 , γ̂5 = 12⊗σ2 , γ̂3 = γ̂1245 = −12⊗σ3 , (2.5)

which satisfy γ̂12345 = 1.

With the above convention for gamma matrices, one finds (in the Lorentzian case)

(ΓM )T = (Γ1,−Γ2,Γ3,−Γ4,Γ5,−Γ0) = ±C±ΓMC
−1
± (2.6)

with C+ ∼ Γ135 ∼ γ24 ⊗ σ1 ≡ C ⊗ σ1 and C− ∼ Γ240 ∼ γ24 ⊗ σ2 = C ⊗ σ2. Here, C

is the charge conjugation matrix in 5d in our convention. Killing spinors ǫ± are related

by a symplectic charge conjugation, using either of C± together with the SO(5)R ∼ Sp(4)

internal charge conjugation Ĉ ∼ γ̂25 = iσ2 ⊗ σ3. Namely, the Killing spinors satisfy

ǫT− = ǭ+C⊗Ĉ. With the appearance of Γ0 in ǭ+ = ǫ†+Γ
0, the symplectic charge conjugation

with Lorentzian signature does not flip the 6d chirality. Also, it is easy to see that the

equations (2.1) for ǫ± correctly transform into each other by the above conjugation. So ǫ±
can both be taken to be in the 4 representation of SO(6), yielding 6d (2, 0) SUSY.

On the other hand, in Euclidean 6d, one finds

(ΓM )∗ = (Γ1,−Γ2,Γ3,−Γ4,Γ5,−Γ6) = ±C±ΓMC
−1
± (2.7)

with same C± as in the Lorentzian case. So one may be tempted to relate ǫ± by a similar

symplectic Majorana condition ǫ−
?
= C ⊗ Ĉǫ∗+. This time, the charge conjugation flips the

6d chirality. Also, changing Γ0 on the right hand side of (2.1) to make it into Γ6 along

τ direction, ǫ± equations are no longer related to each other with the above conjugation.

A natural charge conjugation in the radially quantized Euclidean CFT is to accompany

it with the sign flip of τ [18], as this is changing particles into anti-particles. (This is

basically remembering the Lorentzian physics via τ = it.) Also, we multiply Γ6 on the

charge conjugation matrix to have all matter and Killing spinors to have same chirality.
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Combining the charge conjugation with τ → −τ and a multiplication of Γ6, one finds that

the Euclidean version of (2.1) for ǫ± are related to each other. Thus, we have 32 real Killing

spinors in both Lorentzian and Euclidean 6d theories, all being chiral.

Now we consider the Euclidean theory with time τ . Since all Killing spinors depend on

τ , naive compactification on S5 × S1 breaks all SUSY. To preserve 16 SUSY, one suitably

twists the theory with an SO(2) ⊂ SO(5) chemical potential to admit constant spinors on

S1. Namely, taking a 5 → (3,1) + (1,2) decomposition of an SO(5) ⊃ SO(3) × SO(2)

vector, one takes the SO(2) which rotates 2 and introduces the background gauge field

which covariantizes

∇τ → ∇τ +
i

2r
γ̂45 . (2.8)

This will correspond to introducing a chemical potential for the SO(2) R-charge of the 6d

theory, which we shall explain in detail shortly. The M = 6 components of the Killing

spinor equation then becomes

∂τ ǫ± =
1

2r

(

±1− iγ̂45
)

ǫ± . (2.9)

So in the case with ± sign, we take the Killing spinors with iγ̂45 = ±1 eigenvalue to obtain

16 SUSY. The resulting 5d Killing spinors satisfy

∇µǫ± = ∓ 1

2r
ΓµΓτ ǫ± = − i

2r
ΓµΓτ γ̂

45ǫ± . (2.10)

The 5d Killing spinor equation is thus given by (using σ3ǫ± = ǫ±)

∇µǫ =
1

2r
γµγ̂

45ǫ , (2.11)

which includes both ǫ± cases. This is the same as one of the Killing spinor equations studied

in [20] in 5d (although [20] discussed Minkowskian Einstein manifold). In the reduced 5d

perspective, we simply take the charge conjugation ǫ− = C ⊗ Ĉǫ∗+ without knowing about

τ flip. We also forget the Γ6 = 1 ⊗ σ2 multiplication by regarding ǫ± as 4 component

spinors in 5d. iγ̂45 transforms under this 5d charge conjugation as

Ĉ−1(iγ̂45)Ĉ = −(iγ̂45)∗ . (2.12)

So C ⊗ Ĉǫ∗+ has the opposite sign in its γ̂45 eigenvalue to ǫ+, making it possible to identify

it as ǫ−. To conclude, the spinors ǫ satisfying (2.11) can be regarded as forming a set of

8 Poincare SUSY Q and 8 conformal SUSY S in 6d perspective, which closes into itself

under Hermitian conjugation. These 8 complex or 16 real Killing spinors will be the SUSY

of our 5d SYM.

As a more general twisting, one can choose different SO(2) embeddings in SO(5),

which generically result in a 5d theory with 8 preserved SUSY upon circle reduction. One

introduces the twisting which covariantizes

∇τ → ∇τ +
i

2r

(

∆γ̂45 + (1−∆)γ̂12
)

(2.13)
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on spinors, where ∆ is a real constant. By following the discussions of the last paragraph,

one finds that the reduced 5d theory preserves 8 SUSY, which satisfies iγ̂45 = iγ̂12 = ±1

projection for ǫ±, respectively.

Now let us capture some key aspects of the 5d Abelian gauge theory obtained by

reducing the 6d free tensor theory on the circle, with the above R-symmetry twist. In

the r → ∞ limit, we simply get the maximal SYM in 5 dimension. The coupling to the

background curvature yields various mass terms in the Abelian theory. From the viewpoint

of the 6d theory on S5 × S1, the mass terms come from two sources. Firstly, when one

radially quantizes the 6d theory, all 5 real scalars acquire the conformal mass terms with

mass m = 2
r , since the free scalars have dimension 2. This yields the 6d mass terms

2

r2
(φa)2 +

2

r2
(φi)2 (2.14)

with a = 1, 2, 3, i = 4, 5, in the convention that the kinetic terms are 1
2(∂φ

a)2 + 1
2(∂φ

i)2.

In 5d, extra contributions to the mass terms are induced from the kinetic term with τ

derivatives, since we now have the SO(2) twists. There is no extra contribution for φa, but

the τ derivatives on φi and the fermions λ are twisted as

∇τφ
i → ∇τφ

i − i

r
ǫijφj

∇τλ →
(

∇τ −
i

2r
γ̂45
)

λ . (2.15)

respectively. The 6d kinetic terms thus provide extra contribution to the 5d masses

1

2
(∇τφ

i)2 +
1

2
λ†∇τλ+

2

r2
(φa)2 +

2

r2
(φi)2 → 2

r2
(φa)2 +

3

2r2
(φi)2 − i

4r
λ†γ̂45λ . (2.16)

Adding the last scalar and fermion mass terms to be maximal SYM action (with obvious

covariantization with the 5-sphere metric), one is supposed to obtain an Abelian action

which preserves 16 SUSY. We shall explicitly show that the theory preserves 16 SUSY

with above masses in section 2.2, with a non-Abelian completion.

The case with general SO(2) embedding can be studied as well. The resulting scalar

and fermion mass terms are given by

4− (1−∆)2

2r2
(φa)2 +

4−∆2

2r2
(φi)2 − i

4r
λ†
(

∆γ̂45 + (1−∆)γ̂12
)

λ . (2.17)

We shall come back to this version of non-Abelian theory with 8 SUSY later.

Before proceeding, we illustrate the nature of the 6d partition functions that we expect

our 5d calculations to capture, with the example of 6d Abelian (2, 0) theory on S5 × R.

Up to global rotations and charge conjugation, the BPS bound given by a chosen pair of

Q and S via {Q,S} in 6d is given by

ǫ ≥ 2(R1 +R2) + j1 + j2 + j3 , (2.18)

where R1 is the SO(2) R-symmetry we used to twist the time derivative. R2 is another

Cartan of SO(5) in the orthogonal 2-plane basis, and j1, j2, j3 are three SO(6) Cartans,
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again in the three orthogonal 2-plane basis. The twist above with 8 SUSY uses ∆R1+(1−
∆)R2. There is one Poincare supercharge Q saturating the above energy bound, which has

R1 = R2 = 1
2 , j1 = j2 = j3 = −1

2 , ǫ =
1
2 . The index which counts BPS states saturating

this bound is studied in [21, 22]. It is defined as

Tr
[

(−1)F e−β′{Q,S}x3ǫ+j1+j2+j3yR1−R2aj1bj2cj3
]

(2.19)

with a constraint abc = 1. β′ is the usual regulator in the Witten index. For the U(1)

(2, 0) theory, the full index Z is given by the Plethystic (or multi-particle) exponential of

the letter index z [22]

z =
x6(y + y−1)− x8(ab+ bc+ ca) + x12

(1− x4a)(1− x4b)(1− x4c)
, Z = xǫ0 exp

[

∞
∑

n=1

1

n
z(xn, yn, an, bn, cn)

]

.

(2.20)

ǫ0 is the ‘index version’ of the vacuum Casimir energy of the Abelian theory on S5×R. See

appendix B. The terms in the numerators can be easily understood from the BPS fields

in the free Abelian tensor multiplet. The first two terms come from two complex scalars

(among 5 real) taking charges Φ
(R1,R2)
(j1,j2,j3)

= Φ
(1,0)
(0,0,0) and Φ

(0,1)
(0,0,0). The next 3 terms come from

three chiral fermions with charges Ψ
(R1,R2)
(j1,j2,j3)

= Ψ
(+,+)
(−,+,+), Ψ

(+,+)
(+,−,+) and Ψ

(+,+)
(+,+,−), where ±

denote ±1
2 . The final term +x12 is for a fermionic constraint coming from a component

of the Dirac equation which contains BPS fields and derivatives only, (/∂Ψ)
(+,+)
(+,+,+) = 0.

The three factors in the denominator come from acting three holomorphic derivatives to

the above BPS fields and constraints, which have R1 = R2 = 0 and (j1, j2, j3) = (1, 0, 0),

(0, 1, 0) and (0, 0, 1).

The contribution xǫ0 is normally ignored in the literature on the superconformal index,

but should be there as an overall multiplicative factor in path integral approaches [23].

Of course the index (2.19) can be defined in non-Abelian theories with the same (2, 0)

superconformal algebra.

There are two interesting limits of this general index which we consider in this paper.

Firstly, one can take x → 0, y → ∞, keeping x6y ≡ q fixed. The letter index z becomes

z = q in this limit, yielding

Z = lim
x→0

(xǫ0)
1

1− q
. (2.21)

The first factor either goes to zero or infinity. As we explain in appendix B, the Casimir

energy for the 6d (2, 0) theory is expected to be negative. In any case, one normally

considers the remaining factor 1
1−q , which is the half-BPS partition function which acquires

contribution from operators made of a single complex scalar. Its non-Abelian version for

U(N) gauge group [18] is explained in section 3.3.

Another limit, which is of more interest to us in this paper, is obtained by taking

all but one fugacity variables to be 1, so that more cancelations are expected to appear

than the general superconformal index. We call this the unrefined index. To explain

this limit, we start by noting that the supercharges chosen above commutes with ǫ − R1.

The fugacity conjugate to this charge is a particular combination of the four fugacities

– 8 –
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x, y, a, b(, c). We turn off three fugacities to 1 apart from the one conjugate to ǫ − R1,

which we call q. More concretely, we first rewrite the measure in (2.19) using the BPS

relation ǫ = 2R1 + 2R2 + j1 + j2 + j3:

x3ǫ+j1+j2+j3yR1−R2aj1bj2cj3 = x4ǫ(yx−2)R1(yx2)−R2aj1bj2cj3 . (2.22)

Then setting a = b = c = x2y = 1, and defining q ≡ x4, the measure becomes qǫ−R1 . Note

that, as the half-BPS energy bound in 6d is ǫ ≥ 2|R1|, ǫ − R1 is positive definite for all

states. Rewriting the unrefined letter index (2.20) using q only, one obtains

z =
q + q2 − 3q2 + q3

(1− q)3
=

q

1− q
, Z = qǫ0PE

[

q

1− q

]

= qǫ0
∞
∏

n=1

1

1− qn
. (2.23)

Although the second limit is very different from the first limit above for the half-BPS states,

it has a special property associated with the same 16 SUSY. Namely, ǫ−R1 commutes with

exactly the same 16 supercharges preserved by the half-BPS states considered in the last

paragraph. Superconformal indices can be defined by choosing any 2 mutually conjugate

supercharges Q, S among them. One would obtain the same result no matter which pair

one chooses.

The R-symmetry twist we introduced above for the Abelian theory provides the chem-

ical potential to R1 as well, so that we weight the states by e−β(ǫ−R1). The 16 SUSY of

the 5d theory refers to those in 6d which commutes with ǫ − R1. Thus, we expect the

partition function of this 5d theory with 16 SUSY to be the second limit of the supercon-

formal index, with identification q = e−β of the fugacity and the gauge coupling. During

detailed calculations in later sections, we shall use localization by picking any of the 16

SUSY of the theory. The result is guaranteed to be the same from 5d perspective as the

path integral preserves all 16 SUSY, among which we only use a pair. This is consistent

with our observation in the previous paragraph from the 6d perspective, that same result

will be obtained no matter what supercharges one chooses to define the index.

An important property of the second limit is that the information on the vacuum

Casimir energy is not lost. So if one can compute the partition function for non-Abelian

theories, the N3 scaling is supposed to be calculable in a microscopic way.

The information on the above two limiting cases of the superconformal index is all

encoded in the following simplified index. Namely, we consider an unrefined index which

contains only two chemical potentials conjugate to ǫ−R1, ǫ−R2. In (2.20), this amounts to

turning off a, b, c and keeping x, y only. We weight the states as qǫ−R1
1 qǫ−R2

2 . The resulting

letter index for the Abelian theory becomes

z =
q1q

2
2 + q21q2 − 3q21q

2
2 + q31q

3
2

(1− q1q2)3
. (2.24)

The first term in the numerator comes from a complex scalar which defines the half-BPS

states. The scaling limit q1 → 0, q2 → ∞ which keeps q ≡ q1q
2
2 finite takes the above letter

index to q, which yields the desired half-BPS partition function for the Abelian theory. In

the 5d reduction, the parameters β,∆ are related to q1, q2 by

q1 = e−β∆ , q2 = e−β(1−∆) , q ≡ q1q
2
2 = e−β(2−∆) . (2.25)
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The half-BPS limit amounts to taking

β → ∞ , ∆ → 2 , β(2−∆) = fixed . (2.26)

In section 3.2, we shall explain the structure of the S5 partition with two parameters β,∆,

which is supposed to capture the 6d index Tr[(−1)F qǫ−R1
1 qǫ−R2

2 ].

With more twists with the global symmetries of the theory, including R-symmetries

above as well as spatial rotations, it will be possible to obtain a 5d action which pre-

serves less supersymmetries, and presumably on a squashed S5. Then one can reduce the

Abelian theory along the circle to obtain a 5d theory, and calculate the partition function

after a non-Abelian generalization which can be used to study the general superconformal

index [21, 22] of the 6d (2, 0) theory. This problem is studied in our later work [13].

2.2 Non-Abelian theories

We generalize the above Abelian 5d theory on the 5-sphere, with SO(3)×SO(2) subgroup of

SO(5) R-symmetry preserved by the curvature coupling, to the non-Abelian gauge groups.

We find that the action is

S =
1

g2YM

∫

d5x
√
g tr

[

1

4
FµνF

µν +
1

2
Dµφ

IDµφI +
i

2
λ†γµDµλ− 1

4
[φI , φJ ]2 − i

2
λ†γ̂I [λ, φI ]

+
4

2r2
(φa)2 +

3

2r2
(φi)2 − i

4r
λ†γ̂45λ− 1

3r
ǫabcφ

a[φb, φc]

]

, (2.27)

where I, J = 1, 2, 3, 4, 5, a=1, 2, 3, i=4, 5 are the vector indices of SO(5) R-symmetry. γµ

and γ̂I are 4× 4 gamma matrices for the spatial/internal SO(5), respectively. This action

is invariant under the following 16 supersymmetries:

− iδAµ =
i

2
λ†γµǫ−

i

2
ǫ†γµλ (2.28)

−iδφI = −1

2
λ†γ̂Iǫ+

1

2
ǫ†γ̂Iλ

−iδλ =
1

2
Fµνγ

µνǫ+ iDµφ
Iγµγ̂Iǫ− i

2
[φI , φJ ]γ̂IJǫ+

2i

r
φaγ̂a45ǫ+

i

r
φiγ̂iγ̂45ǫ

−iδλ† = −1

2
ǫ†γµνFµν + iǫ†γ̂IγµDµφ

I − 2i

r
ǫ†γ̂45aφa − i

r
ǫ†γ̂45γ̂iφi +

i

2
ǫ†γ̂IJ [φI , φJ ]

where ǫ satisfies

∇µǫ =
1

2r
γµγ̂

45ǫ , ∇µǫ
† = − 1

2r
ǫ†γµγ̂

45 (2.29)

on S5. As we already explained with the Abelian theories, we take ǫ+ with iγ̂45 = +1

eigenvalues, which is related to ǫ− with −1 eigenvalue by a symplectic charge conjugation.

We explain the reality property of the action and SUSY transformation in some de-

tail. Imposing the symplectic Majorana conditions for all matter and Killing spinors, the

action (2.27) is real apart from the last term which is cubic in the scalars. Also, we note

that the SUSY transformations between scalars-fermions are all real, while those between

vector-fermions are all imaginary, i.e. violating reality condition. The factor −i we inserted
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on the left hand sides of (2.28) guarantees the above property.1 So in the path integral with

this action, the 16 SUSY transformations should be regarded as symmetry transformations

associated with changes of some integration contours. The localization method that we

shall use later in this paper applies with such a complexification.

Technically, we started with the Abelian theory on S5 obtained by a Scherk-Schwarz

reduction from 6d, and then added non-Abelian terms to SUSY and action, trying to secure

16 SUSY. We think the complex transformation and action are compulsory consequences

of this analysis, as we also tried but failed to find other real versions. At least one can

motivate why gauge fields-fermion part of the transformation could be imaginary from

the Abelian theory (in which case the action is actually real). Consider some part of 16

SUSY, e.g. 8 SUSY that we consider in the later part of this section. This choice of 8

SUSY provides a notion of vector and hypermultiplets. The supersymmetric reduction

of the free hypermultiplet part is quite clear, and we find no reason to ruin the reality

of the SUSY transformation in this part. However, the gauge field/fermion part seems

somewhat subtle. In the Lorentzian theory on S5 × R, the self-dual 3-form condition

Hµνρ = 1
2ǫµνραβH

αβ0 can be solved by naturally taking Fµν = Hµν0 to be independent

momentum-like fields, subject to 6d Bianchi identity forHMNP . In the Euclidean theory on

S5×R, covariant self-dual condition cannot be imposed. Still we want to secure the number

of degrees of freedom as this will be natural for getting the correct physics. If we stick to

the definition of Fµν as Hµν0, one would have to continue Fµν to Hµν6 = −iHµν0 = −iFµν

along τ = it. This extra factor of i would make the vector-fermion SUSY transformation to

be imaginary. Combined with the formal SUSY checks that we did, which independently

yielded imaginary transformations, we feel that (2.28) is somewhat inevitable.2

One can check that the supersymmetry algebra is SU(4|2). Firstly, one can obtain the

following commutation relations

[δ1, δ2]φ
a = 2iǫ†1γ

µǫ2Dµφ
a + 2iǫ†1γ̂

Jǫ2[φ
J , φa] +

4i

r
ǫ†1γ̂

abγ̂45ǫ2φ
b

= Lvφ
a + i[Λ, φa] +

2i

r
ǫabcǫ†1γ̂

bǫ2φ
c , (2.30)

[δ1, δ2]φ
i = 2iǫ†1γ

µǫ2Dµφ
i + 2iǫ†1γ̂

Jǫ2[φ
J , φi]− 2i

r
ǫ†1ǫ2ǫ

ijφj

= Lvφ
i + i[Λ, φi] +

i

r
ǫ†1ǫ2ǫ

ijφj ,

[δ1, δ2]Aµ = 2iǫ†1γ
νǫ2Fνµ + 2ǫ†1γ̂

Iǫ2Dµφ
I − 2

r
ǫijǫ†1γµγ̂

iǫ2φ
j

= LvAµ +DνΛ

[δ1, δ2]λ = Lvλ+ i[Λ, λ] +
1

4
Θµνγµνλ− iǫ†ǫ2γ̂

45λ− 2iǫ†1γ̂
aǫ2γ̂

a45λ+ (eqn of motion)

1Compared to the 5d maximal SYM action on the flat Euclidean space, perhaps this −i factor is uncon-

ventional. In the last case, the reality condition is often ignored as we are in a Euclidean space.
2However, one could have imposed different reality conditions on various fields. For instance, the choice

of [24] is different from ours in many places. Although not all the prescriptions in [24] are well motivated to

us, by suitable analytic continuations or complexifications we can make half of our SUSY to fit into theirs.
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where

vµ = 2iǫ†1γ
µǫ2 , Λ = −2iǫ†1γ

µǫ2Aµ+2ǫ†1γ̃
Iǫ2φ

I ,

Lvφ
i = vµ∂µφ

i , Lvφ
a = vµ∂µφ

a , LvAµ = vν∂νAµ+∂µv
νAν ,

Θµν = ∇[µξν]+ξλω µν
λ . (2.31)

In 6d SU(4|2), the bosonic subgroup is SU(4)×SU(2)×U(1), where the U(1) part is ǫ−R1.

By dimensional reduction to S5, one is only left with −R1 which appears on the right hand

side of (2.30) as rotations by ǫijφj . Also, using the following Fierz identities

(ǫ†1γνǫ2)(ǫ
†
3γ

µν γ̂45ǫ4) = −1

4
(ǫ†1ǫ4)(ǫ

†
3γ

µνγν γ̂
45ǫ2)−

1

4
(ǫ†1γ

αǫ4)(ǫ
†
3γ

µνγαγν γ̂
45ǫ2)

+
1

8
(ǫ†1γ

αβǫ4)(ǫ
†
3γ

µνγαβγν γ̂
45ǫ2)

(ǫ†1γ
µν γ̂45ǫ2)(ǫ

†
3γνǫ4) = −1

4
(ǫ†1ǫ4)(ǫ

†
3γνγ

µν γ̂45ǫ2)−
1

4
(ǫ†1γ

αǫ4)(ǫ
†
3γνγαγ

µν γ̂45ǫ2)

+
1

8
(ǫ†1γ

αβǫ4)(ǫ
†
3γνγαβγ

µν γ̂45ǫ2)

and taking all spinors to belong to ǫ−, one can check for vµ = 2iǫ1γ
µǫ2, w

µ = 2iǫ†3γ
µǫ4 that

[v, w]µ = Lvw
µ = −4

r
(ǫ†1γνǫ2)

(

ǫ†3γ
µν γ̂45ǫ4

)

+
4

r

(

ǫ†1γ
µν γ̂45ǫ2

)

(ǫ†3γνǫ4)

=
8

r
(ǫ†1ǫ4)(ǫ

†
3γ

µγ̂45ǫ2)−
8

r
(ǫ†1γ

µǫ4)(ǫ
†
3γ̂

45ǫ2) . (2.32)

Normalizing spinors as ǫ†αǫβ = δᾱβ where α, β = 1, 2, 3, 4 are for 4 of SO(6), one obtains

[vᾱβ , vγ̄δ]
µ = −4

r

(

δβγ̄v
µ
ᾱδ − δᾱδv

µ
γ̄β

)

, (2.33)

which is forming the desired SU(4) ∼ SO(6) algebra. SU(2) part of the algebra is also easily

visible as rotations on φa. So we interpret it as the 5d reduction of SU(4|2) ⊂ OSp(8|4)
superconformal group for the 6d (2, 0) theory, commuting with ǫ−R1.

By taking all ǫi’s to be ǫ− above, we obtained the anti-commutation relations of the

type {Q,S}. The commutation relations of the form {Q,Q} or its conjugate {S, S} can be

studied by taking ǫ1 to belong to ǫ− and ǫ2 to belong to ǫ+ in (2.30). Then, one finds

ǫ†1γ
µǫ2 = 0 , ǫ†1γ̂

aǫ2 = 0 , ǫ†1ǫ2 = 0 (2.34)

by studying iγ̂45 = (iγ̂45)† eigenvalues. Thus, the bosonic elements of the superalgebra do

not extend beyond SU(4|2). For instance, the analysis for 5d SCFT with F (4) symmetry

would have yielded {Q,Q} ∼ P , {S, S} ∼ K as in [25], but they naturally do not appear

in our case.

In the next section, we shall use the localization method to perform the path integral

for the partition function. To this end, we attempt to make some part of the supersymmetry

algebra to hold off-shell. The most important requirement is that the single supercharge,

or a pair of conjugate supercharges, which we choose to perform localization calculation
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takes the required algebra (nilpotency) off-shell. We take 8 of our 16 SUSY, and decompose

the field into the vector and hypermultiplets. The vector multiplet part of the algebra is

made off-shell for all 8 SUSY by introducing 3 auxiliary fields, while hypermultiplet part

of the algebra is made off-shell only for a subset which includes a pair of Hermitian SUSY

generators. This strategy is all spelled out in [24].

With the internal gamma matrices chosen as (2.5), the 8 SUSY are chosen by taking

γ̂3ǫ = −ǫ. The internal charge conjugation matrix is taken to be Ĉ = γ̂25 = iσ2 ⊗ σ3. One

can write the 8 SUSY and 16 component fermion λ as

ǫ =

(

ǫ1

ǫ2

)

⊗
(

1

0

)

, λ =

(

χ1

χ2

)

⊗
(

1

0

)

+

(

ψ1

ψ2

)

⊗
(

0

1

)

. (2.35)

ǫA, χA, ψA for A = 1, 2 can be regarded as SU(2) spinors. This SU(2) symmetry is broken

in the action by curvature couplings, and only the Cartan generator proportional to σ3 is

a symmetry. The SO(5) origin of this U(1) can be easily traced by noticing γ̂12 = iσ3⊗12,

γ̂45 = iσ3 ⊗ σ3. The U(1) acts on χA as a simultaneous rotation on 12 and 45 planes,

while on ψA as opposite rotation on the two 2-planes. For later use, we take a complex

4-component spinor ψ on S5 as ψ ≡ ψ2. The first component ψ1 is related to ψ by a

symplectic-Majorana conjugation using SO(5)× SU(2), inherited from our SO(5)× SO(5)

symplectic-Majorana conjugation. Let us also define the scalars as

φ ≡ φ3 , q1 ≡ 1√
2
(φ4 − iφ5) , q2 ≡ 1√

2
(φ1 + iφ2) . (2.36)

The real scalar φ participates in the vector multiplet, while qA belong to the adjoint

hypermultiplet.

For the vector multiplet, we introduce three auxiliary fields DI , whose on-shell values

become

DI = −(σI)AB[q
B, q̄A]−

i

r
δI3φ . (2.37)

The off-shell Lagrangian that we shall write in a moment is invariant under

− iδAµ = iχ†γµǫ (2.38)

−iδφ = χ†ǫ

−iδχ =
1

2
Fµνγ

µνǫ− iDµφγ
µǫ+

1

r
φσ3ǫ+ iDIσIǫ

−iδχ† = −1

2
Fµνǫ

†γµν − iǫ†γµDµφ− 1

r
ǫ†σ3φ− iǫ†σIDI

−iδDI = Dµχ
†γµσIǫ− [φ, χ†]σIǫ− i

2r
χ†σIσ3ǫ . (2.39)

The off-shell SUSY algebra including the 8 Killing spinors is SU(4|1), and is given by

[δ1, δ2]Aµ = ξν∂νAµ + ∂µξ
νAν +DµΛ,

[δ1, δ2]φ
3 = ξµ∂µφ

3 + i[Λ, φ3] + ρφ3,

[δ1, δ2]χ = ξµ∂µχ+
1

4
Θµνγ

µνλ+ i[Λ, χ] +
3

2
ρχ+

3

4
RIJσIJχ,

[δ1, δ2]D
I = ξµ∂µD

I + i[Λ,DI ] + 2ρDI + 3RIJDJ , (2.40)
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where

ξµ = 2iǭ1γ
µǫ2 , Λ = −2iǭ1γ

µǫ2Aµ + 2ǭ1ǫ2φ
3,

Θµν = D[µξν] + ξλωµν
λ , , ρ =

2i

5
Dµ(ǭ1γ

µǫ2),

RIJ =
2i

5
(ǭ1γ

µσIJDµǫ2 −Dµǭ1γ
µσIJǫ2) . (2.41)

These results are all found in [24].

We also consider an off-shell generalization of the hypermultiplet algebra. As the off-

shell generalization of the whole 8 SUSY algebra cannot be achieved with a finite number

of auxiliary fields, we follow the strategy of [24] and demand that we have a single off-shell

nilpotent supercharge, with which one can do localization calculations. In other words,

we are interested in a SUSY which satisfies δ2 = 0 off-shell (up to a bosonic symmetry

generator) with a given commuting spinor ǫ parameter. With a bosonic ǫ chosen among

the 8 SUSY generators explained above, we follow [24] and consider another bosonic spinor

parameter ǫ̂ satisfying

ǫ†ǫ = ǫ̂†ǫ̂ , (ǫA)TCǫ̂B
′
= 0 , ǫ†γµǫ+ ǫ̂†γµǫ̂ = 0 . (2.42)

One introduces two auxiliary complex fields FA, having 0 on-shell values, and consider

the following SUSY transformation with a commuting Killing spinor (which reduces to our

on-shell SUSY upon taking FA = 0):

δqA =
√
2i(ǫ†)Aψ , δq̄A = −

√
2iψ†ǫA

δψ =
√
2

[

−DµqAγ
µǫA + [φ3, qA]ǫ

A − 3i

2r
qA(σ

3)ABǫ
B − i

2r
qAǫ

A − iFA′ ǫ̂A
′

]

δψ† =
√
2

[

ǫ†Aγ
µDµq̄

A + ǫ†A[q̄
A, φ3]− i

3

2r
ǫ†A(σ

3)AB q̄
B − i

2r
ǫ†Aq̄

A − i(ǫ̂†)A′F̄A′

]

δFA′
=

√
2(ǫ̂†)A

′

[

−γµDµψ +
i

2r
ψ − [φ3, ψ]−

√
2[χA, q

A]

]

δF̄A′ =
√
2

[

−Dµψ
†γµ − i

2r
ψ† + [ψ†, φ3]−

√
2[q̄A, (χ

†)A]

]

ǫ̂A′ . (2.43)

This is a special case of [24] which has − 1
2rqAǫ

A, 1
2rψ terms on the right hand sides with

a choice of their mass parameters. The SUSY algebra for a given commuting ǫ is

δ2qA = ξµ∂µq
A + i[Λ, qA] +

3

4
RIJ(σIJq)A +

1

2r
qA

δ2ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ +
1

2r
ψ

δ2FA′
= ξµ∂µF

A′
+ i[Λ, FA′

] +
5

4
R̂IJ(σ̂IJF )A

′
+

1

2r
FA′

, (2.44)

where

ξµ = −iǫ†γµǫ , Λ = iǫ†γµǫAµ + φ , Θµν = D[µξν] + ξλωµν
λ ,

RIJ = −2i

5
ǫ†σIJγµDµǫ , R̂IJ =

2i

5
ǫ̂†σ̂IJγµDµǫ̂ . (2.45)
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In the above off-shell formulation, the Lagrangian invariant under the above 8 SUSY trans-

formations is given by

L =
1

g2YM

tr

[

1

4
FµνF

µν +
1

2
(Dµφ)

2 +
i

2
χ†γµDµχ− 1

2
DIDI − i

r
D3φ+

5

2r2
φ2 − i

2
χ†[φ, χ]

+
1

4r
χ†σ3χ+ |Dµq

A|2 + iψ†γµDµψ + |[φ, qA]|2 −DI(σI)AB[q
B, q̄A]− FA′

F̄A′

− i

r
φ[qA, q̄A]+

3

r2
|q1|2+ 4

r2
|q2|2+iψ†[φ, ψ]+

√
2iψ†[χA, q

A]−
√
2i[q̄A, χ

†A]ψ+
1

2r
ψ†ψ

]

(2.46)

The integration contours for DI , Re(FA), Im(FA) are taken to be on the imaginary axes.

We can generalize the theory preserving 8 SUSY with a continuous parameter ∆,

whose Abelian version we introduced in section 2.1 (corresponding to a generalized Scherk-

Schwarz reduction). The generalized Lagrangian is

LYM =
1

g2YM

tr
[1

4
FµνF

µν +
1

2
(Dµφ

3)2 + |Dµq
A|2 + 5

2r2
(φ3)2 +

15

4r2
|qA|2 − 1

2
DIDI

− i

r
φ3D3 +

(

[q̄A, φ
3] + i

1− 2∆

2r
q̄A

)(

[φ3, qA] + i
1− 2∆

2r
qA
)

−q̄A(σI)AB

(

[DI , qB]− δI3
1− 2∆

2r2
qB
)

+
i

2
χ†γµDµχ+ iψ†γµDµψ +

1

4r
χ†σ3χ− F̄A′FA′

− i

2
χ†[φ3, χ] + iψ†

(

[φ3, ψ] + i
1− 2∆

2r
ψ

)

+
√
2iψ†[χA, q

A]−
√
2i[q̄A, χ

†]ψ
]

.

(2.47)

When ∆ = 1, it becomes our previous action with 16 SUSY. It is invariant under

δqA =
√
2i(ǫ†)Aψ , δq̄A = −

√
2iψ†ǫA

δψ =
√
2

[

−DµqAγ
µǫA + [φ3, qA]ǫ

A − 3i

2r
qA(σ

3)ABǫ
B + i

1− 2∆

2r
qAǫ

A − iFA′ ǫ̂A
′

]

δψ† =
√
2

[

ǫ†Aγ
µDµq̄

A + ǫ†A[q̄
A, φ3]− 3i

2r
ǫ†A(σ

3)AB q̄
B + i

1− 2∆

2r
ǫ†Aq̄

A − i(ǫ̂†)A′F̄A′

]

δFA′
=

√
2(ǫ̂†)A

′

[

−γµDµψ − i
1− 2∆

2r
ψ − [φ3, ψ] +

√
2i[χA, q

A]

]

δF̄A′ = −
√
2

[

Dµψ
†γµ − i

1− 2∆

2r
ψ† − [ψ†, φ3]−

√
2i[q̄A, (χ

†)A]

]

ǫ̂A′ (2.48)

and same SUSY transformation on vector multiplet fields. One can identify the fields and

parameters in our theory and [24] as

φ3 = −iσHST , χ = −iλHST , iσIDI = DHST , q
A = qAHST , ψ =

√
2ψHST . (2.49)

Our parameter ∆− 1
2 is proportional to their hypermultiplet mass associated with a global

symmetry. The off-shell SUSY algebra for the vector multiplet is the same, while the
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off-shell algebra for a given commuting Killing spinor for hypermultiplet becomes

δ2qA = ξµ∂µq
A + i[Λ, qA] +

3

4
RIJ(σIJq)A − 1− 2∆

2r
qA

δ2ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ − 1− 2∆

2r
ψ

δ2FA′
= ξµ∂µF

A′
+ i[Λ, FA′

] +
5

4
R̂IJ(σ̂IJF )A

′ − 1− 2∆

2r
FA′

. (2.50)

In section 3.3, we shall use this theory to calculate the perturbative partition function,

which we suggest would be part of a more general superconformal index.

3 5-sphere partition function as a 6d index

In this section, we study the partition function of the maximal SYM on S5 and the theory

with 8 SUSY that we considered in the previous section.

We first consider the theory with 16 SUSY. We choose a commuting Killing spinor ǫ

to be a linear combination ǫ = ǫ++ǫ−, where ǫ± satisfy the following projection conditions

σ3ǫ± = ±ǫ± , γ5ǫ± = ∓iγ12ǫ± = ±iγ34ǫ± = ǫ± . (3.1)

The explicit expressions for ǫ± are (see appendix A, η± there)

ǫ± = e±
3i
2
yǫ±0 , (3.2)

where constant spinors ǫ±0 are conjugate to each other as (ǫ+0 )
∗ = C ⊗ (iσ2)ǫ−0 . y is the

angle coordinate of the Hopf fiber of S5, over a CP
2 base. The following spinor bilinears

will be useful:

vµ = ǫ†γµǫ , Jµν = ∇µvν = −2iǭ+γµνǫ
+ (= e1 ∧ e2 − e3 ∧ e4) . (3.3)

Jµν is the Kahler 2-form of CP
2, and vµ is the translation generator along the fiber y

direction. They satisfy ∇ρJµν = 2v[µgν]ρ. With this ǫ, we can add any term to the

Lagrangian QV which is exact in the corresponding supercharge Q, without changing

the value of the final integral. This property relies on the property that the chosen Q is

nilpotent, Q2 = 0. Actually, since the chosen Killing spinor Q is real, it amounts to picking

one Poincare supercharge Q with its conjugate conformal supercharge S, and taking a real

linear combination of the two. Thus one actually finds

Q2 ∼ {Q,S} = (symmetry generator) , (3.4)

where the right hand side comes from a suitable combination of the bosonic generators

appearing in the {Q,S} part of the SU(4|2) algebra. Thus, only when we choose V in the

Q-exact deformation QV to be neutral under the rotation of {Q,S} (which we will do),

one is guaranteed not to change the partition function by deformation.

Q-exact deformations that we introduce are

δ
(

(δχ)†χ
)

=
1

2
FµνF

µν − 1

4
ǫµνρστvµFνρFστ + (Dµφ)

2 +

(

1

r
φ+ iD3

)2

− (D1)2 − (D2)2

−iχ†γµDµχ− i[φ, χ†]χ+
1

r
χ†σ3χ− 1

2r
χ†vµγ

µσ3χ− i

4r
Jµνχ

†γµνχ (3.5)
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for the vector multiplet, and

1

2
δ
(

(δψ)†ψ + ψ†(δψ†)†
)

= |Dµq
A|2 − i

r
vµq̄σ3Dµq −

i

r
vµq̄Dµq +

1

r2
q̄1q

1 +
4

r2
q̄2q

2 + |[φ3, qA]|2 − F̄A′FA′

+iψ†γµDµψ − 1

2r
vµψ†γµψ − i

4r
Jµνψ†γµνψ + iψ†[φ3, ψ] (3.6)

for the hypermultiplet. Here, the commuting Killing spinors are normalized to satisfy

ǫ†ǫ = 1, and traces are assumed for every terms.3 It is easy to see that the corresponding

V ’s that we introduced above all commute with {Q,S}. As V are chosen to take the form

of (δΦ)†Φ for various fields Φ, the charge of V under {Q,S} is basically the inverse of the

charge carried by the chosen SUSY generator δ. As this is a linear combination of Q,S,

it suffices to show that Q,S are both neutral under the rotation of {Q,S}. This trivially

follows from the following Jacobi identities (with {Q,Q} = {S, S} = 0)

[{Q,S}, Q] = 0 , [{Q,S}, S] = 0 . (3.7)

Thus we are allowed to introduce the above Q-exact deformations.

3.1 Perturbative partition function and Casimir energies

Turning on the above Q-exact deformations and taking their coefficients to be large, one

is led to a Gaussian path integral around a set of saddle points satisfying

Fµν=
1

2

√
gǫµναβγv

αF βγ , Dµφ=0 , D3=
i

r
φ , D1=D2=0 , q1=q2=0 , F 1′ =F 2′ =0 ,

(3.8)

while taking all fermion fields to zero. These equations can be easily obtained by studying

the vanishing SUSY condition, or alternatively by taking the bosonic part of the Q-exact

deformations (3.5), (3.6) to be zero. See also [24, 26] which study the same equations.

The first equation of (3.8) is for the self-dual Yang-Mills instantons on the CP2 base (in

the convention that the Kahler 2-form of CP2 is anti-self-dual), while any component of the

gauge field along the Hopf fiber is demanded to be zero from vµFµν = 0. The configurations

solving this equation are called ‘contact instantons’ in some literatures, and recently studied

on general contact manifolds, including S5 [27, 28]. In particular, [28] explores the twistor

construction of this equation, which could probably be used to get a better understanding

of its solutions. If the topological quantum number for these instantons on CP
2 is nonzero,

one would get various non-perturbative corrections to the partition function. We shall

study them in the next subsection, and focus on the perturbative part here.

With Fµν = 0, one can take the gauge connection to zero on S5. The only nonzero fields

at the saddle point are D3 and φ satisfying D3 = i
rφ, where φ is a constant Hermitian

matrix. The saddle point is thus parameterized by the Hermitian matrix φ, which we

should exactly integrate over after all other Gaussian fluctuations are integrated out. The

3We add two conjugate terms to form V in the hypermultiplet part (3.6), as this simplifies the determi-

nant calculation significantly.
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integration over φ will come with various factors of integrands. Part of them will come from

the contributions from the determinants of quadratic fluctuations, which we shall turn to

in a while. There is also a factor of integrand that one obtains by plugging in the saddle

point values of the fields into the original action. Plugging in nonzero φ and D3 into (2.46),

this becomes

e−S0 , S0 =
1

g2YM

∫

d5x
√
g
4

r2
trφ2 =

4π3r3

g2YM

trφ2 =
2tr(πrφ)2

β
≡ 2π2trλ2

β
, (3.9)

where
∫

d5x
√
g = π3r5 on a 5-sphere with radius r, 4π2

g2Y M
= 1

r1
= 2π

rβ yields 4π3r3

g2Y M
= 2π2r2

β ,

and we defined λ ≡ rφ0 at the last step. The natural justification of the gYM vs. β relation

we use here is given in section 3.2.

From the vector multiplet bosons, one has to diagonalize the differential operator

appearing in the following quadratic fluctuations in theQ-exact deformation (φ fluctuations

simply decouple to yield a constant factor, which cancels out with other constant factors):

1

2
FµνF

µν − 1

4
ǫµνλρσvµFνλFρσ

= Aµ
(

−D2δνµ +DµD
ν + 4δνµ − 2(Jµλv ·D + 2v[µJλ]ρD

ρ)gλν
)

Aν . (3.10)

Using the basis of the vector spherical harmonics introduced in appendix A to diagonalize

the differential operator, one obtains the following determinant:

detV,b =
∏

α∈root

∞
∏

k=0

(k + 4 + irα(φ))
(k+1)(k+2)2(k+3)

12 (k + irα(φ))
(k+1)(k+2)2(k+3)

12
−2×

(k+1)(k+2)
2

×
∞
∏

k=1

k
∏

m=−k+1

(

k2 + 4k − 2m+ 9 + r2α(φ)2
)

(k+2)((k+2)2−m2)
8 . (3.11)

See appendix A for the derivation. From the vector multiplet fermions, one obtains

detV,f =

∏

α∈root

∞
∏

k=0

(k+4+irα(φ))
(k+1)(k+2)2(k+3)

12 (k+irα(φ))
(k+1)(k+2)2(k+3)

12 −
(k+1)(k+2)

2 (k+3+irα(φ))
(k+1)(k+2)

2

×
∞
∏

k=1

k
∏

m=−k+1

(

k2 + 4k − 2m+ 9 + r2α(φ)2
)

(k+2)((k+2)2−m
2)

8 . (3.12)

Dividing the two contributions, one obtains

detV,f
detV,b

=
∏

α∈root

∞
∏

k=0

(k + 3 + irα(φ))
(k+1)(k+2)

2

∞
∏

k=1

(k + irα(φ))
(k+1)(k+2)

2

=
∏

α∈root

∞
∏

k=1

(k + irα(φ))k
2+2 . (3.13)

This agrees with the result found in [26].
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From the hypermultiplet, one obtains from the two complex scalars q1, q2 the follow-
ing:

detH,b =

∏

α∈root

∞
∏

k=0

1

((k + 2)2 + r2α(φ)2)
(k+1)(k+2)2(k+3)

12

k
∏

m=−k

1

(k2 + 4k + 1 + 2m+ r2α(φ)2)
(k+2)((k+2)2−m2)

8

(3.14)

where m = k, k − 2, k − 4, · · · ,−k. From hypermultiplet fermions,

detH,f =

∏

α∈root

∞
∏

k=1

(k + 2 + irα(φ))
(k+1)(k+2)2(k+3)

6
−

(k+1)(k+2)
2 (3.15)

×
∞
∏

k=0

(k + 1 + irα(φ))
(k+1)(k+2)

2

k
∏

m=−k+1

(

k2 + 4k + 1 + 2m+ r2α(φ)2
)

(k+2)((k+2)2−m2)
8 .

The net hypermultiplet determinant is

detH,f

detH,b
=

∏

α∈root

∞
∏

k=1

1

(k + irα(φ))k2
. (3.16)

Again see appendix A for the derivation.

Combining the contributions from vector and hypermultiplets, one obtains the follow-

ing perturbative determinant

∏

α∈root

∞
∏

k=1

(k + irα(φ))2 =
∏

α∈root

∞
∏

k=1

(k2 + r2α(φ)2) =
∏

α∈root

2π sinh(πrα(φ))

πrα(φ)
. (3.17)

Here, we used
∏∞

k=1 k
2 = 2π after zeta function regularization [26]. The integration over

the Hermitian matrix can be replaced by an integration over the eigenvalues with the Van-

dermonde measure inserted, which cancels α(φ) in the denominator of (3.17). Combining

it with the classical Gaussian measure, and defining dimensionless variables λ = rφ, one

obtains

Zpert =
1

|W |

∫

dλ e
−

2π2tr(λ2)
β

∏

α∈root

2 sinh(πα(λ)) , (3.18)

where W is the Weyl group. One thus finds that the perturbative part of the partition

function, with 16 SUSY, takes the form of the pure Chern-Simons partition function on

S3 [29]. See also [30–32] for some later studies of the same expression.

For simplicity, let us first consider the case with U(N) gauge group in detail. Pure

Chern-Simons partition function with U(N) gauge group is [29, 30]

ZCS =
1

N !

∫

∏

i

dλie
−ikπλ2

i

∏

i 6=j

2 sinh (πλij) (3.19)

=
(−1)

N(N−1)
2 e−πiN2/4e−

πi
6k

N(N2−1)

kN/2

N−1
∏

m=1

[

2 sin
πm

k

]N−m
.
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Comparing with our partition function, one should replace − iπ
k by β

2 . Thus one finds

Zpert = (−1)N(N−1)/2

(

iβ

2π

)N/2

e−πiN2/4e
N(N2−1)

12
β
N−1
∏

m=1

[

i(e
mβ
2 − e−

mβ
2 )
]N−m

(3.20)

= (−1)N(N−1)/2

(

iβ

2π

)N/2

e−πiN2/4iN(N−1)/2e
N(N2−1)

6
β
N−1
∏

m=1

(1− e−βm)N−m

where we used
∑

mm(N−m) = N(N2−1)
6 . The factors of i’s combine to be iN

2/2e−πiN2/4 =

1, and we shall not be careful about the possible overall minus sign. Thus, regarding

q ≡ e−β as the fugacity of ǫ − R1 in the 6d theory, the perturbative contribution itself

would have taken the form of an index, supposing that we can somehow trade away the

prefactor
(

β
2π

)N/2
. We shall see in the next subsection that, combining this factor with

the non-perturbative contribution will make the latter to be an index. So we ignore this

piece in this subsection and proceed.

More generally, for the gauge groupG with rank r, the 3-sphere Chern-Simons partition

function is given by [35, 36]

ZCS = [det(C)]1/2
i
|G|
2

−r

kr/2
e−

πi
6k

c2|G|
∏

α>0

2 sin
π(α · ρ)

k
, (3.21)

where |G| is the dimension of the gauge group, c2 is the dual Coxeter number, and C is

the inverse matrix of the inner product in the weight space (or Cartan matrix for simply

connected gauge group G). ρ is the Weyl vector which is the summation of all fundamental

weights.

To get the correct information on the BPS state degeneracies, we will also have to

include the non-perturbative corrections, which we discuss in the next subsection. However,

from (3.20) one immediately observes a multiplicative factor e−β(ǫ0)pert with

(ǫ0)pert = −N(N2 − 1)

6
(3.22)

for U(N). For general gauge group, one finds from (3.21) that (ǫ0)pert becomes

(ǫ0)pert = −c2|G|
6

, (3.23)

where c2 is the dual Coxeter number and |G| is the dimension of the semi-simple part of

the gauge group G. See the next subsection for a nonperturbative correction to this result

(subleading in the large N limit). This factor can naturally be interpreted as the ‘vacuum

energy’ or the Casimir energy. However, one should be careful about the identification of ǫ0
as the Casimir energy, as one has to pick a regularization when one computes the vacuum

energy. For instance, in free QFT, the Casimir energy is the summation of all bosonic mode

frequencies minus the fermionic mode frequencies, divided by 2. In a radially quantized

CFT, one can employ the zeta function regularization or the energy regularization as done,

e.g. in [23]. However, our result above can be regarded as a ‘Casimir energy’ obtained by
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using ǫ − R1 as a regulator, as this is the only charge which can appear in this index. In

many theories, including 4d SCFTs admitting free theory limits, we illustrate that different

regularizations lead to different ǫ0. However, we observe that the index Casimir energy

contains useful information on the degrees of freedom of the theory. In particular, in all

4d SCFT examples that we study in appendix B, we find that the index Casimir energy is

always proportional to the Casimir energy by a universal coefficient, and is also a particular

linear combination of the a and c central charge of the CFT. Thus, we think our index

Casimir energy could also be an interesting measure of the degrees of freedom.

Coming back to our case, the coefficient in front of c2|G| has no reason to agree

with the true Casimir energy, due to the usage of an index version of regularization and

renormalization. Indeed, the calculation of the large N Casimir energy of AdS7 × S4 from

gravity yields [17]

ǫ0 = −5N3

24ℓ
, (3.24)

where ℓ is the AdS7 radius. The coefficients −1
6 and − 5

24 in front of N3 are indeed different.

However, our ǫ0 robustly reproduces the expected N3 behavior in the large N limit, which

we regard as a significant microscopic evidence supporting that N M5-branes exhibit N3

some of degrees. It should be interesting to study the gravity dual of (3.23). It is also

curious that the finite rank index Casimir energy from the perturbative part is proportional

to c2|G|, which is the anomaly coefficient of the ADE (2, 0) theory in 6d [37–39]. See,

however, section 3.3 for a subleading correction that is contained in a non-perturbative

correction that we propose.

It should be very desirable to pursue the virtue of the index Casimir energy that we

have studied here (and in appendix B), and try to relate it to other measures of degrees

of freedom such as central charges, as we illustrate in appendix B with concrete examples

in 4d.

To better understand the perturbative expansion structure of Zpert, We expand it in

the large N limit with small ’t Hooft coupling, β → 0, N → ∞, Nβ = fixed ≪ 1. The

perturbative ‘free energy’ Fpert = − logZpert is expanded as

Fpert = −N
2
log

β

2π
− βN(N2 − 1)

6
−

N
∑

n=1

(N − n) log(1− e−nβ)

→ −N
2

2
log(Nβ) +

3N2

4
+N2

∞
∑

n=1

an(Nβ)
n (3.25)

with some O(1) coefficients an, where we used

N
∑

n=1

n log n =
N2

2
logN − N2

4
+
N

2
logN +

1

12
logN +O(1)

logN ! = N logN −N +
1

2
log(2πN) +O(N−1) (3.26)

to obtain the first two leading terms in Nβ. Here, at each order in Nβ, we only showed

the leading terms in N . Especially, the last infinite sum is acquiring contributions from the
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f abc f abc

large N

N3

Figure 1. 2-loop diagrams and the large N double-line diagrams with N3 scalings for SU(N).

planar diagrams. Naturally, the leading term in the weak coupling expansion scales like

N2. It is also of some interest to study a sub-leading term at the 2-loop (∼ N3β) order,

to study the 5d aspect of the 6d Casimir energy that we obtained above. From the exact

expression given on the first line of (3.25), this order term comes from two sources. It

first comes from the second term β(ǫ0)pert = −βN(N2−1)
6 . Also, the last summation which

takes the form −∑n dn log(1 − e−βEn) yields a term at the same order, β
2

∑

n dnEn with

dn = N − n and En = n. Adding them, one obtains the following net (finite N) 2-loop

contribution

− βN(N2 − 1)

6
+
β

2

N
∑

n=1

n(N − n) = −βN(N2 − 1)

12
. (3.27)

So in the weak coupling regime, the information on the Casimir energy (ǫ0)pert in Fpert

totally goes to the 2-loop order, but also became ambiguous at this order by combining

with an extra contribution from β/2
∑

n dnEn.

We also work out a strong coupling large N limit of Fpert, keeping β finite (Nβ → ∞).

It turns out that the leading behavior is the same as the ’t Hooft large N limit with λ =

fixed ≫ 1, although the sub-leading terms are differently organized in the two limits. The

former limit is perhaps more interesting, as this regime admits a dual gravity description

in a Euclidean AdS7 which is supersymmetrically compactified along the time direction

with finite radius. On the first line of (3.25), the second term is dominant in this strong

coupling large N limit:

Fpert ∼ −βN
3

6
. (3.28)

So it acquires contribution only from the large N Casimir energy. Even with the instanton

correction provided in the next subsection (proved in [13]), this is the dominant term in

the full free energy.

With the above understandings, it is easy to trace how theN3 scaling, or more precisely

the c2|G| factor, appears in the Casimir energy, from the viewpoint of perturbative QFT.

βǫ0 appears in Fpert at the sub-leading 2-loop order β ∼ g2YM at weak coupling. Considering

possible 2-loop vacuum bubbles such as those shown as the Feynman diagrams of Fig 1,
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it is clear that the group theoretic factors are always fabcfabc = c2|G|. Also, in the large

N double line notation for U(N), the appearance of 3 single loops naturally yields the N3

scaling. Strictly speaking, this argument does not say that (ǫ0)pert itself shows the N3

behavior, but just that the combination (ǫ0)pert+
1
2

∑

n dnEn in (3.27) does. But also with

our exact result (3.20), it still looks like a heuristic 5d insight of the appearance of N3

in ǫ0.
4

Actually, such a group theoretic argument at O(g2YM ) applies to any quantum field

theories with adjoint fields, in any dimension. For instance, this is basically the reason why

N(N2 − 1) or c2|G| appears in the pure Chern-Simons partition functions (3.19), (3.21).

However, for generic adjoint QFT’s, this is no more than the standard ’t Hooft planar

contribution at a particular sub-leading order, or a group theory of quadratic Casimir

fabcfabc at finite N . It is only because we have a higher dimensional interpretation (with

g2YM being related to the inverse temperature or the 6th direction’s radius in our case)

that we can take this c2|G| or N3 scaling as the physics of 6d (2, 0) theory. Also, for

generic adjoint QFT’s, there is no guarantee that the strong coupling large N limit would

be anything like (3.28).5

We also note that, from the viewpoint of our 5-sphere partition function, it is not clear

at this stage whether ADE gauge theories have any special status to have 6d UV fixed

points, as many arguments go similarly for other gauge groups BCFG. For instance, the

index nature of the Chern-Simons index could appear from (3.21), from the expansion of

the sine factors. Just like the U(N) case that we explained, there is βr/2 prefactor and

possibly some non-integral constant factor which will obstruct Zpert from being an index.

Like the U(N) case, all such factors should combine with the non-perturbative part to be

an index, for the S5 partition function to be interpretable as a 6d index. It could be that

this non-perturbative corrections, combined with the above prefactors, may violate the 6d

index structure for non-ADE gauge groups. However, one should not confuse the 6d gauge

group and 5d gauge group which appears after compactification. For instance, suitably

twisted compactifications of 6d ADE theories can yield all BCFG gauge groups in 5d [33].

Our BCFG partition functions could thus be ‘twisted indices,’ similar to [34].

3.2 Nonperturbative corrections and AdS7 gravity duals

To motivate the studies on possible non-perturbative corrections to our partition function,

let us first go back to the 6d index explained in section 2.1, and study it for the free Abelian

6d theory. This free theory index would be also important in the U(N) theories, as the

overall U(1) degrees are decoupled from the rest which forms the interacting An type (2, 0)

theory. In section 2.1, the ‘letter index’ was shown to be z = q
1−q , and the full index is

4This was our original motivation that the N3 scaling in ǫ0 could appear from 5d gauge theories.
5For some special QFT’s, like pure Chern-Simons theory on S3 whose partition function takes the same

form as our Zpert with β ∼ i/k, one might be able to say more on this term which scales like N3 (still

subleading at weak ’t Hooft coupling). We are not sure if this has any meaning at all, perhaps in a different

physical context.
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given by

ZU(1)(q) = qǫ0
∞
∏

n=1

1

1− qn
. (3.29)

Here ǫ0 is the index Casimir energy contribution from the U(1) degrees. This zero point

energy is given by ǫ0 = 1
2tr[(−1)F (ǫ − R1)]. This contribution can be calculated from the

letter index z(q) = q
1−q , as we review in appendix B (which is explained in detail in [40]).

The result is

ǫ0 =
1

2
lim
q→1−

q
d

dq
z(q) =

1

2β2
− 1

24
, (3.30)

where q = e−β . After renormalization of the first divergent factor, one obtains ǫ0 = − 1
24 .

This is basically the same as the zeta function regularization, as the value of ǫ− R1 from

the degrees in the letter index z is 1, 2, 3, · · · . The zeta function regularization yields
1
2

∑∞
n=1 n = − 1

24 . Inserting this in (3.29), the index becomes the inverse of the Dedekind

eta function η(τ), where τ is given by q = e2πiτ .

Thus, for our 5d approach to have any chance to capture the ‘free’ U(1) partition

function, or the partition function for the decoupled degrees coming from overall U(1), we

should be able to find from a 5d calculation a multiplicative factor 1
η(τ) . Using the modular

property of η(τ), one obtains the following expansion for small β:

ZU(1) =

(

β

2π

)
1
2

e
π2

6β

∞
∏

k=1

1

1− e
− 4π2k

β

. (3.31)

This takes the form of a non-perturbative expansion in β.

Motivated by the above findings, let us first consider what kind of corrections can

appear to our 5d partition function. From the saddle point equations (3.8), Yang-Mills

instanton configurations are allowed on the CP
2 base of S5 in Hopf fibration. In our

normalization for gYM , the classical action for k instantons on the CP
2 base is given by6

1

4g2YM

∫

CP
2
tr(FµνF

µν) =
4π2k

g2YM

. (3.32)

This naturally yields the relation 4π2

g2Y M
= 1

r1
= 2π

rβ with β ≡ 2πr1
r5

. We introduced this in the

introduction and also used it in section 3.1. Despite the absence of the physical D0-brane

particle picture, we are suggesting that Euclidean D0-brane loops which wraps a (possibly

contractible) cycle, which we formally regard as time, would provide the Kaluza-Klein

‘momentum’ (in the sense of Fourier wavenumber) along the extra circle. More precisely,

the Euclidean D0-brane (or instanton) action on S5 is

S0 =
4π2k

g2YM

· 2πr = 4π2k

β
. (3.33)

6If we call the instantons of our saddle points to be self-dual, the Kahler 2-form Jµν of CP2 is anti-self-

dual. So the embedding of J into Abelian subgroup as Fµν ∼ Jµν [41] is excluded in our problem.
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2πr comes from the integration of the Lagrangian over the Hopf fiber direction y. So the

non-perturbative correction should take the form of

Z =
∞
∑

k=0

Zke
− 4π2k

β , (3.34)

which fits completely well with (3.31), apart from the prefactor e
π2

6β and
(

β
2π

)
1
2
.

To explain the last two factors, let us first turn to e
π2

6β . The presence of this factor

can be understood by noticing that there could be a constant shift to the supersymmetric

actions on S5 without modifying any symmetry. For instance, [42] emphasized in the

context of topologically twisted 4d N = 4 SYM that there could be couplings of gYM

(∼ β in our case) to the background curvature. In our case, on S5, we may have constant

couplings like
α

g2YM

∫

S5

d5x
√
gR2 , (3.35)

where R is the Riemann scalar curvature of S5 and α is a dimensionless constant. With a

suitable coefficient α, this term provides the factor e
π2

6β . As we have our freedom (or ambi-

guity) in 5d to choose our theory on S5, without spoiling any 5d symmetry, we implicitly

assume a certain constant shift of the action of the above form, so that the desired factor

comes out. As we are assuming the completeness of 5d SYM description, at least in the

BPS sector, such curvature couplings are restricted to O(β−3), O(β−2), O(β−1) in general.

So this is fixing a mild ambiguity to get much more information on the 6d physics.

Now we turn to
(

β
2π

)
1
2
. We first note that the perturbative partition function (3.20) at

N = 1 is just
(

β
2π

)
1
2
. We take this factor from the perturbative part and combine it with the

instanton contribution of the form (3.34), to provide a desired factor in (3.31). Multiplying

this factor from the perturbative part, now the non-perturbative series (3.34) takes the form

of an index, supposing that the coefficients are chosen to make (3.31). So we find that,

even for the U(1) theory, the structure of perturbative/non-perturbative contributions to

the S5 partition function confronts and passes quite a nontrivial consistency test for it be

an index.

Let us emphasize at this point that Abelian instantons, which we expect to account

for (3.31), are not completely well defined purely within field theories, as they often come

with zero sizes which should be regarded as singular instantons. In fact, non-Abelian

instantons (at least in flat space) also have singularities in their moduli spaces which cor-

respond to small instantons. However, small instantons are often important to understand

various issues in string theory [43]. Often, giving non-commutativity to the field theory

makes the instanton moduli space smooth, and also makes Abelian instantons to be regular

field theory solitons [44]. This may correspond to a (perhaps mild) UV completion of the

5d quantum field theory.

With these motivations, we now turn to the non-Abelian instanton corrections. We

only discuss the case with U(N) gauge group. We claim that the full U(N) non-perturbative

– 25 –



J
H
E
P
0
5
(
2
0
1
3
)
1
4
4

partition function takes the form

Z(β) = Zpert(β)Zinst(β) , (3.36)

where Zpert is given in the previous subsection, and

Zinst =
[

Z
U(1)
inst

]N
= e

Nπ2

6β

∞
∏

k=1

1
(

1− e
− 4π2k

β

)N
= η(τ)−N (3.37)

with τ ≡ 2πi
β (namely, e2πiτ ≡ e

− 4π2

β ). (3.37) takes the general form of (3.34), again with a

suitable coupling to the background curvature for the e
Nπ2

6β factor. The proof of (3.37) will

be presented in [13], with generalized to the squashed S5. In this paper, we shall present

several nontrivial evidences and implications of this result.

Before studying the physics of (3.37), let us note that the instanton partition functions

are usually very simple in theories with 16 SUSY. In many important examples, the

partition functions are either 1 or just functions of the coupling g2YM . On R
4 and R

4 ×
S1, [45, 46] calculates the instanton partition function in the so-called Omega deformation

ǫ1, ǫ2, which roughly speaking compactifies the non-compact R
4 part of the instanton

moduli. When we consider the instanton partition function of maximal SYM, the following

simplifications appear. Although the instanton partition function depend on the VEV of

a scalar (similar to our saddle point value for φ) in generic gauge theories with 8 SUSY,

this dependence disappears at some special values of ǫ1, ǫ2 with 16 SUSY. To explain

some important cases, we first note that when ǫ1=ǫ2, the instanton partition function just

becomes 1. This was a crucial element in showing that the S4 partition function for the

N = 4 SYM becomes a Gaussian matrix model with Zpert = Zinst = 1 [47]. On the other

hand, with anti-self-dual Omega background with ǫ1 = −ǫ2 ≡ ~, the instanton partition

function for the N = 4 theory becomes independent of the remaining ~, and depends on

g2YM only. The partition function on the anti-self-dual Omega background becomes [46]

Zinst =
1

η(τ)N

(

τ =
θ

2π
+

4π2i

g2YM

)

, (3.38)

apart from the possible overall shift for the instanton number in the topologically trivial

sector, like those we discussed above. In particular, the result is the same both for instan-

tons on R
4 or R4 × S1. The instanton correction (3.37) we propose on S5 is basically the

same as the result on R
4 or R4×S1, in anti-self-dual Omega background. The relevance of

these simpler cases to (3.37) is explained in [13]. In this paper, we collect some evidences

in favor of (3.37) and discuss its physical implications.

Firstly, this yields the desired index (3.31) for N = 1.

Secondly, the nonperturbative result (3.37) can be dualized for β ≫ 1 to

Zinst =

(

2π

β

)N/2

η(iβ/2π)−N , (3.39)
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using the S-dual modular property of the eta function. The factor
(

β
2π

)−N/2
in (3.39)

combines with a factor
(

β
2π

)N/2
in the perturbative partition function (3.20) which prevents

an index interpretation of (3.20). Moving it to the non-perturbative part and combining

this with (3.37), one finds that both perturbative and non-perturbative parts take the form

of an index, since

(

β

2π

)N/2

Zinst =
1

η(iβ/2π)N
= q

N
24

N
∏

n=1

1

(1− qn)N
, (3.40)

where we defined q ≡ e−β . So the structure (3.34) of instanton expansion conspires

well with the provided prefactor in the perturbative part, to make the whole expres-

sion ZpertZinst an index. It is somewhat curious to find that the perturbative and non-

perturbative parts have to combine for the 5d SYM to tell us the 6d physics consistently.7

Most importantly, we shall now show that the non-perturbative completion (3.37)

perfectly agrees with the large N index that we know from the gravity dual on AdS7×S4.

Before combining the instanton correction (3.37), the perturbative part (3.20) shows a very

strange large N behavior. Let us consider the part which gives the degeneracy information:

N−1
∏

n=1

(1−qn)N−n = 1−(N−1)q1+
N2 − 5N + 6

2
q2−N

3 − 12N2 + 35N − 36

6
q3+· · · . (3.41)

The low energy degeneracy at large N is so large that this part alone will not have a

sensible large N limit: especially it cannot have a large N gravity dual on AdS, which

exhibits a low energy spectrum which is completely independent of N . Combining Zinst

with the perturbative contribution, one obtains

Z = ZpertZinst = e
N(N2−1)β

6

N−1
∏

n=1

(1− e−nβ)N−n · eNβ
24

∞
∏

n=1

1

(1− e−nβ)N
. (3.42)

The large N index, apart from the zero point energy part, is given by the MacMahon

function,

ZN→∞ =
∞
∏

n=1

1

(1− qn)n
. (3.43)

Again, we used q ≡ e−β . We see that the contribution of O(N) fermionic ‘letters’ at

low energy in (3.41) cancels with the O(N) bosonic letter contributions, leaving O(1) low

energy degeneracy.

Now we study the same index in the large N limit from the AdS7 × S4 supergravity,

giving the weight qǫ−R1 to the low energy gravity states. Again choosing a particular Q,

7This sounds a bit similar to the failure of perturbative finiteness of maximal SYM [48]. The only chance

for this theory to be UV complete is then by combining the full perturbative/non-perturbative effects at

the cutoff scale where the distinction between the two becomes meaningless [49]. Although we do not see

any serious divergence in our SUSY path integral, the consistency of 6d physics still requires us to combine

to two.
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ǫ SO(6) SO(5) boson/fermion

p ≥ 1 2p (0, 0, 0) (p, 0) b

p ≥ 1 2p+ 1
2 (12 ,

1
2 ,

1
2) (p− 1

2 ,
1
2) f

p ≥ 2 2p+ 1 (1, 0, 0) (p− 1, 1) b

p ≥ 3 2p+ 3
2 (12 ,

1
2 ,−1

2) (p− 3
2 ,

3
2) f

· 7
2 (12 ,

1
2 ,−1

2) (12 ,
1
2) b (fermionic constraint)

Table 1. BPS Kaluza-Klein fields of AdS7 × S4 supergravity.

S and viewing our index as the unrefined version of the superconformal index associated

with Q,S, it suffices for us to consider the contribution from gravity states preserving these

SUSY. The Kaluza-Klein field contents are given in [22], and we only list the BPS fields

in table 1. Collecting all the contributions, one obtains the single particle gravity index

Isp(q)

=
1

(1− q)3





∞
∑

p=1

p
∑

n=0

q2p−n − 3
∞
∑

p=1

p
∑

n=1

q2p+1−n + 3
∞
∑

p=2

p−1
∑

n=1

q2p+1−n −
∞
∑

p=3

p−2
∑

n=1

q2p+1−n + q3





=
q

(1− q)2
= q + 2q2 + 3q3 + 4q4 + · · · . (3.44)

The multiparticle exponent of Isp yields the MacMahon function

Imp(q) = exp

[

∞
∑

n=1

1

n
Isp(q

n)

]

=
∞
∏

n=1

1

(1− qn)n
(3.45)

as the multiparticle gravity index on AdS7 × S4, precisely agreeing with the result (3.43)

from 5d gauge theory calculation.

It is curious to find that the non-perturbative correction (3.37) yields an O(N) correc-

tion to the ‘index Casimir energy’ obtained from the perturbative part. One obtains

ǫ0 = (ǫ0)pert + (ǫ0)inst = −N(N2 − 1)

6
− N

24
. (3.46)

It would be curious to see if this can be understood as a combination of various anomaly

coefficients of the 6d (2, 0) theory [37–39], similar to what we observe for the 4d Casimir

energy in appendix B.

Finally, MacMahon function that we obtained at large N is well-known as the generat-

ing function for the 3 dimensional Young diagrams. Curiously, our finite N index (3.42) is

the generating function for the 3d Young diagrams with their heights being no longer than

N . This index also coincides with the vacuum character of the WN algebra, apart from

a factor of eta function [50]. It should be interesting to seek for the physical meanings of

these apparently surprising relations, if any.8

8We thank Amihay Hanany for discussions which led us to the observation on the restricted 3d Young

diagrams. Also, we thank Rajesh Gopakumar for explaining the coincidence with theWN vacuum character.
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3.3 Generalizations

One can easily modify the localization calculus for the maximal SYM on S5 to include two

chemical potentials conjugate to ǫ−R1 and ǫ−R2. One has to calculate the S5 partition

function for the theory with 8 SUSY, with two parameters β ∼ g2YM and ∆.

By following the calculation similar to the case with ∆ = 1 in section 3.1 and ap-

pendix A, one obtains similar cancelations between non-BPS modes and finds the follow-

ing integrand of the Hermitian matrix integral. Firstly, the classical contribution and the

determinant from the vector multiplet part does not change compared to the analysis in

the previous section. The hypermultiplet contribution changes as

∏

α∈root

∞
∏

k=0

(k + 1 +∆+ irα(φ))−
(k+1)(k+2)

2 (k + 2−∆+ irα(φ))−
(k+1)(k+2)

2

=
∏

α∈root

∞
∏

k=1

(k − 1 + ∆+ irα(φ))−
k2−k

2 (k + 1−∆+ irα(φ))−
k2+k

2 . (3.47)

Notice that our previous partition function at ∆ = 1 is same as that with ∆ = 0, as the two

points just exchange the roles of R1 and R2.
9 The full integrand, apart from the Gaussian

factor and the Vandermonde measure, is given by

∏

α∈root

∞
∏

k=1

(k + irα(φ))k
2+2

(k − 1 + ∆+ irα(φ))
k2−k

2 (k + 1−∆+ irα(φ))
k2+k

2

. (3.48)

The exact integration with Gaussian measure and the Vandermonde determinant does not

seem to be as simple as our previous example with 16 SUSY.
The above infinite product requires regularization. Various factors in (3.48) are all

regularized in the literatures using zeta function regularization. One obtains (we use the
fact that adjoint representation is real to obtain the second line)

∏

α∈root

∞
∏

k=1

(k + irα(φ))2 · (k + irα(φ))k
2

(k − 1 + ∆+ iα(φ))
k2

2 (k + 1−∆+ iα(φ))
k2

2

·
(

k − 1 + ∆+ irα(φ)

k + 1−∆+ irα(φ)

)
k

2

−→
∏

α∈root

2π sinh(πrα(φ))

πrα(φ)
· e 1

2 f(irα(φ))−
1
2 f(1−∆+irα(φ)) · e− 1

2 ℓ(1−∆+irα(φ)) , (3.49)

where the function f(x) (even in x→ −x) is given by [26]

f(x) =
iπx3

3
+ x2(1− e−2πix) +

ixLi2(e
−2πix)

π
+

Li3(e
−2πix)

2π2
− ζ(3)

2π2
, (3.50)

and the (odd) function ℓ(x) is given by [51]

ℓ(x) =
iπx2

2
− x log(1− e2πix) +

iLi2(e
2πix)

2π
− iπ

12
. (3.51)

9This essentially gives the determinant for a hypermultiplet in a real representation, if one replaces α(φ)

in (3.47) by µ(φ), where µ runs over the weights in the representation. For a complex representation,

one has to multiply a similar factor with µ(φ) replaced by −µ(φ), and then take square root to get the

determinant [13].
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The matrix integral is given by

1

|W |

∫

dλe
−

2π2tr(λ2)
β

∏

α∈root

2 sinh(πα(λ))e
1
2
f(iα(λ))− 1

2
f(1−∆+iα(λ))− 1

2
ℓ(1−∆+iα(λ)) , (3.52)

where λ ≡ rφ.

We first note that the limit β → ∞, ∆ → 2 with fixed β(2 − ∆) > 0, towards the

half-BPS partition function, is quite singular and may drastically change the nature of the

matrix integral. Firstly, the strong coupling limit β → ∞ takes the Gaussian measure to

1. Secondly, the second term in the denominator, at k = 1 yields a factor 1−∆+ irα(φ)

which at ∆ = 2 completely cancels the zeros in the sinh measure. So in this limit, there

are no short distance repulsions between different eigenvalues. We still have a parameter

βH = β(2−∆) which gives the fugacity q = e−βH of the half-BPS partition function. One

can thus consider calculating the matrix integral in a series expansion of βH , and compare

with the expected half-BPS partition function. As (q1q2)
ǫ0 becomes infinity with negative

ǫ0, we expect to have a divergent prefactor multiplying the conventional half-BPS partition

function.

For simplicity, let us consider the U(N) half-BPS partition function. The U(N) parti-

tion function for half-BPS states is given by [18]

Z =
N
∏

n=1

1

1− qn
, (3.53)

up to a divergent multiplicative factor, with q = e−βH as defined in the previous paragraph.

It will be interesting to see whether our result, supplemented by the instanton correction

of [13], reproduces (3.53).

4 Discussions

In this paper, we explored the possibility that partition functions of SYM on S5 could

capture the indices of the 6d (2, 0) theory on S5 × S1. The 5d field theories are carefully

chosen, by first studying the Scherk-Schwarz reductions of Abelian (2, 0) theories on S5×S1

on the circle, and then trying to generalize to non-Abelian theories on S5. We showed that

the partition function for the maximal SYM on S5 captures the physics of the 6d (2, 0)

theory in a surprisingly accurate and detailed manner.

Firstly, the partition function takes the form of an index, which from a naive 5d

perspective has no reason to be true. Generalizing the idea to other 5d theories on S5, the

requirement that the partition function take the form of an index could severely restrict the

class of theories having a 6d UV fixed point. For instance, it should be desirable to further

study the index for the (2, 0) theory with more complicated chemical potentials, from 5d

gauge theories with as little as 2 SUSY (those preserved by the most refined superconformal

index). Also, studying our partition function for other gauge groups will also be interesting.

One can also study a 5d reduction of the 6d (1, 0) superconformal theories.

We find that our index captures the N3 some of degrees of freedom by what we called

the ‘index Casimir energy,’ which is a Casimir energy like quantity appearing in the index.
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It should be interesting to see if this is an observable which is worth further studies. Also,

possible relations to other suggested measures of degrees of freedom could be interesting.

Derivation of our index Casimir energy from the gravity dual should also be very important.

We showed that the index calculated from the 5d maximal SYM with U(N) gauge

group completely agrees with the supergravity index on AdS7 × S4 in the large N limit.

We find this as quite a nontrivial signal that our approach is on the right way. Similar

successful matching of instanton partition function on R
4×S1 and the DLCQ supergravity

index on AdS7 × S4 was found in [11].

The perturbative partition function that we find for maximal SYM on S5 turns out to

be identical to the pure Chern-Simons partition function on S3. Possible physical connec-

tions between the two observables are not clear to us at the moment. However, inspired

by the fact that the Jones polynomial and other topological invariants were studied by

Wilson loop observables in Chern-Simons theories [35], one may ask if the Wilson loops in

5d gauge theories can play interesting roles as well. Earlier works on Wilson loops in 5d

SYM include [52].
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A Spinors, spherical harmonics and determinants

In this paper, we mostly view S5 as a Hopf fibration over CP
2. The metric of a round

sphere with unit radius is given by

ds2(S5) = ds2(CP2) +

(

dy +
1

2
sin2 ρσ3

)2

(A.1)

ds2(CP2) = dρ2 +
1

4
sin2 ρ(σ21 + σ22) +

1

4
sin2 ρ cos2 ρ σ23 ≡ eaea

with the vierbein

e1 = dρ , e2 =
1

2
sin ρ cos ρ σ3 , e3 =

1

2
sin ρ σ1 , e4 =

1

2
sin ρ σ2 (A.2)

– 31 –



J
H
E
P
0
5
(
2
0
1
3
)
1
4
4

on CP
2 and the 1-forms

σ1 = sinψdθ − cosψ sin θdφ ,

σ2 = cosψdθ + sinψ sin θdφ ,

σ3 = dψ + cos θdφ . (A.3)

We first consider the spherical harmonics on S5 that we use. Let us start with the

scalar spherical harmonics. We denote the scalar harmonics by Y k which are defined as

eigenfunctions of the Laplacian on S5 satisfying the eigenvalue equation

−∇µ∇µY
k = k(k + 4)Y k , k ≥ 0 , (A.4)

with degeneracy 1
12(k+1)(k+2)2(k+3). They take a representation of the SO(6) isometry

group on S5. Then one can further decompose the harmonics by the eigenvalues of one of

SO(6) Cartan generators such as

LvY
k = v · ∇Y k = imY k , (m = −k,−k + 2, · · · , k − 2, k) . (A.5)

Modes with given k,m have degeneracy 1
8(k + 2)

(

(k + 2)2 −m2
)

. Lv is the Lie derivative

along the Hopf fiber of S5.

The spinor harmonics can be constructed using the scalar spherical harmonics Y k with

simple Killing spinors η± on S5 (which we call ǫ± in section 3) satisfying

∇µη± = ± i

2r
γµη± , γ12η± = −γ34η± = ±iη± . (A.6)

These spinors are normalized as η̄+η+ = η̄−η− = 1 and their bilinear produces the vector

along Hopf fiber direction η̄+γ
µη+ = vµ. One can choose the following basis for the spinor

harmonics (inspired by [53])

Ψ1 = Y kη+, −k ≤ m ≤ k

Ψ2 = γµ∇̂µY
kη+, −k ≤ m < k

Ψ3 = Y kη−, −k ≤ m ≤ k

Ψ4 = γµ∇̂µY
kη−, −k < m ≤ k

. (A.7)

where ∇̂µ = ∇µ − vµv · ∇ is the projected derivative on to CP
2 base. Note that, as η±

has γ5 eigenvalue +1 and the operator γµ∇̂µ anticommutes with γ5, the basis Ψ2 and Ψ4

have γ5 eigenvalues −1. Therefore the above basis Ψ span the complete basis of the spinor

harmonics. Then it is straightforward to find the linear combinations of the spinor basis Ψ

to form the eigenfunctions of the Dirac equation on S5. The Dirac operator acts on Ψ’s as

{

γµ∇µΨ1 = i(52 +m)Ψ1 +Ψ2

γµ∇µΨ2 = −(k −m)(k +m+ 4)Ψ1 − i(32 +m)Ψ2
{

γµ∇µΨ3 = −i(52 −m)Ψ3 +Ψ4

γµ∇µΨ4 = −(k +m)(k −m+ 4)Ψ3 + i(32 −m)Ψ4 .
(A.8)
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The eigenvalues of the Dirac operator are then given by

iγµ∇µΨ →



















+k + 5
2

−k − 5
2

+k + 3
2 , m 6= k

−k − 3
2 , m 6= −k .

(A.9)

Thus we can rearrange the spinor harmonics into the two set of eigenstates with the eigen-

values ±(k + 5
2) and the degeneracy 1

6(k + 1)(k + 2)(k + 3)(k + 4) where k ≥ 0.

For the vector spherical harmonics, we first study the eigenfunctions of the Maxwell

operator on S5:

(−∇2δνµ +∇µ∇ν + 4δνµ)Aν = Oν
µAν . (A.10)

The spinor basis Ψ can be used to construction the basis for the vector harmonics. Let us

introduce the divergenceless vector basis

A1
µ = η†+γµΨ1 +

im
k(k+4)∇µY

k = vµY
k + im

k(k+4)∇µY
k

A2
µ = η†+γµΨ2 −

(

1− m(m+4)
k(k+4)

)

∇µY
k

A3
µ = η†+γµΨ4

A4
µ = η†−γµΨ2

(A.11)

where they satisfy the Lorentz gauge condition ∇µAµ = 0. The factors ∇µY
k are added

to A1
µ and A2

µ for this. In this construction, one can also consider other basis such as

η†+γµΨ3 but they identically vanish due to the projection properties of η±. The vectors

A1,2,3,4 together with the pure gauge ∇µY
k constitutes the 5 basis of the vector spherical

harmonics. The Maxwell operator Oν
µ acts on Aµ as

{

Oν
µA1

ν = (k(k + 4) + 2m+ 8)A1
µ − 2iA2

µ

Oν
µA2

ν = 2i (k(k + 4)−m(m+ 4))A1
µ + (k(k + 4)− 2m)A2

µ

Oν
µA3

ν = (k + 1)(k + 3)A3
µ

Oν
µA4

ν = (k + 1)(k + 3)A4
µ (A.12)

while its action on the pure gauge ∇µY
k is trivial. The eigenvalues are given by

Oν
µAν →











(k + 2)(k + 4), k ≥ 0

k(k + 2), k ≥ 2 and m 6= ±k
(k + 1)(k + 3), k ≥ 1 and m 6= k or − k

(A.13)

They can also be rearranged to the vector harmonics having eigenvalue (k+2)(k+4) with

degeneracy 1
3(k + 1)(k + 3)2(k + 5) where k ≥ 0.

We now compute one-loop determinant of the quadratic action in the Q-exact defor-

mations. We first focus on the vector multiplet. The Q-exact deformations is given in

eqn (3.5). The integrals over the fluctuations of the auxiliary scalars DI are trivial and
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the contribution from the scalar field φ is canceled with the pure gauge and the ghost

contributions. For the gauge part, we need to diagonalize the quadratic terms

1

2
FµνF

µν − 1

4
ǫµνλρσvµFνλFρσ − [Aµ, φ0]

2

= Aµ
(

−∇2δνµ +∇µ∇ν + 4δνµ − 2(Jµλv · ∇+ 2v[µJλ]ρ∇ρ)gλν
)

Aν − [Aµ, φ0]
2

≡ Aµ(Oν
µ + Ôν

µ)Aν − [Aµ, φ0]
2 (A.14)

The vector basis A’s can be used to diagonalized these terms. We obtain
{

Ôν
µA1

ν = 2(m+ 4)A1
µ − 2iA2

µ

Ôν
µA2

ν = 2i (k(k + 4)−m(m− 4))A1
µ − 2mA2

µ

Ôν
µA3

ν = 2(3−m)A3
µ

Ôν
µA4

ν = 2(3 +m)A4
µ (A.15)

Plugging these results with (A.12), the eigenvalues of the gauge part becomes


















(k + 4)2 + α(φ0)
2, k ≥ 0

k2 + α(φ0)
2, k ≥ 2 and m 6= ±k

k(k + 4)− 2m+ 9 + α(φ0)
2, k ≥ 1 and m 6= −k

k(k + 4) + 2m+ 9 + α(φ0)
2, k ≥ 1 and m 6= k

(A.16)

This leads to the bosonic one-loop determinant from the vector multiplet

detV,b =

∏

α∈root

[

∞
∏

k=0

(

(k+4)2+α(φ0)
2
)

1
24 (k+1)(k+2)2(k+3)

∞
∏

k=2

(

k2 + α(φ0)
2
)

1
24 (k+1)(k+2)2(k+3)−

(k+1)(k+2)
2

×
∞
∏

k=1

k
∏

m=−k+1

(

k(k + 4)− 2m+ 9 + α(φ0)
2
)

1
8 (k+2)((k+2)2−m2)

]

(A.17)

We then turn to the fermionic contribution. The quadratic terms for the gaugino are

− iχ†γµ∇µχ− i[φ, χ†]χ+ χ†σ3χ− 1

2
χ†γ5σ

3χ− i

2
χ†(γ12 − γ34)χ . (A.18)

We will consider only a complex spinor field χA=1 in the doublet of SU(2)R as the other

field χA=2 is related to χ1 by the reality condition. Then the fermionic quadratic terms

reduce to

χ†

[

−iγµ∇µ + iα(φ0) + 1− 1

2
(γ5 + iγ12 − iγ34)

]

χ ≡ χ†OV,fχ . (A.19)

Using the spinor harmonics Ψ, one can easily show that this quadratic operator acts on

Ψ as
{

OV,fΨ1 =
(

m+ 4 + iα(φ0)
)

Ψ1 − iΨ2

OV,fΨ2 = i(k −m)(k +m+ 4)Ψ1 +
(

−m+ iα(φ0)
)

Ψ2
{

OV,fΨ3 =
(

m− 3 + iα(φ0)
)

Ψ3 − iΨ4

OV,fΨ4 = i(k +m)(k −m+ 4)Ψ3 +
(

−m+ 3 + iα(φ0)
)

Ψ4 .
(A.20)
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By considering the proper degeneracy of the spinor basis Ψ, we obtain the fermionic de-
terminant of the vector multiplet

detV,f =

∏

α∈root

[

∞
∏

k=0

(

k + 4 + iα(φ0)
)

1
12 (k+1)(k+2)2(k+3)(

k + iα(φ0)
)

1
12 (k+1)(k+2)2(k+3)−

(k+1)(k+2)
2 (A.21)

×
∞
∏

k=0

(

k + 3 + iα(φ0)
)

(k+1)(k+2)
2

k
∏

m=−k+1

(

k(k + 4)− 2m+ 9 + α(φ0)
2
)

1
8 (k+2)((k+2)2−m2)

]

.

There is a huge cancelation between the bosonic contribution (A.17) and the fermionic

contribution (A.21). Collecting the remaining terms, the one-loop perturbative part of the

path integral for the vector multiplet becomes

detV,f
detV,b

=
∏

α∈root

∞
∏

k=0

(

k + 3 + iα(φ0)
)

(k+1)(k+2)
2

∞
∏

k=1

(

k + iα(φ0)
)

(k+1)(k+2)
2

=
∏

α∈root

∞
∏

k=1

(

k + iα(φ0)
)k2+2

. (A.22)

Let us move on to the hypermultiplet part. The Q-exact deformation generalized by

a continuous parameter ∆ is

1

2
δ
(

(δψ)† + ψ†(δψ†)†
)

= |Dµq
A|2− i

r
vµq̄σ3Dµq+

i

r
(1−2∆)vµq̄Dµq+

(∆−2)2

r2
q̄1q

1+
(∆+1)2

r2
q̄2q

2+|[φ0, qA]|2

−F̄A′FA′
+ iψ†γµDµψ +

1− 2∆

2r
vµψ†γµψ − i

4r
Jµνψ†γµνψ + iψ†[φ0, ψ] . (A.23)

The integrals of the auxiliary scalars FA′
are trivial. The matter scalar field qA gives the

bosonic determinant

detH,b =
∏

α∈root

∞
∏

k=0

k
∏

m=−k

[

(

k(k + 4) + 2m∆+ (∆− 2)2 + α(φ0)
2
)

1
8
(k+2)((k+2)2−m2)

(A.24)

×
(

k(k + 4) + 2m(∆− 1) + (∆ + 1)2 + α(φ0)
2
)

1
8
(k+2)((k+2)2−m2)

]

.

As we did above for the fermionic part of the vector multiplet, the fermionic term can be

diagonalized using the spinor basis Ψ. Then the quadratic operator OH,f acting on the

fermionic field becomes

{

OH,fΨ1 =
(

−m− 1−∆+ iα(φ0)
)

Ψ1 + iΨ2

OH,fΨ2 = −i(k −m)(k +m+ 4)Ψ1 +
(

m+ 1 +∆+ iα(φ0)
)

Ψ2
{

OH,fΨ3 =
(

−m+ 2−∆+ iα(φ0)
)

Ψ3 + iΨ4

OH,fΨ4 = −i(k +m)(k −m+ 4)Ψ3 +
(

m− 2 + ∆+ iα(φ0)
)

Ψ4 .
(A.25)
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Taking into account the degeneracies of Ψ, we obtain the fermionic one-loop determinant

detH,f =

∏

α∈root

[

∞
∏

k=0

(k+1+∆+iα(φ0))
(k+1)(k+2)

2

k−1
∏

m=−k

(

k(k+4)+2m(∆−1)+(∆+1)2+α(φ0)
2
)

1
8 (k+2)((k+2)

2
−m2)

×
∞
∏

k=1

(k+2−∆−iα(φ0))
(k+1)(k+2)

2

k
∏

m=−k+1

(

k(k+4)+2m∆+(∆−2)2+α(φ0)2
)

1
8 (k+2)((k+2)

2
−m2)

]

.

(A.26)

Combining the bosonic and the fermionic determinant, the final one-loop determinant for

the matter hypermultiplet is given by

detH,f

detH,b
=

∏

α∈root

∞
∏

k=0

(

k + 1 +∆+ iα(φ0)
)− 1

2
(k+1)(k+2)(

k + 2−∆+ iα(φ0)
)− 1

2
(k+1)(k+2)

=
∏

α∈root

∞
∏

k=1

(

k − 1 + ∆+ iα(φ0)
)− k2−k

2
(

k + 1−∆+ α(φ0)
)− k2+k

2 . (A.27)

B Indices and Casimir energies in various dimensions

In this appendix, we explain how the index captures a quantity similar to the vacuum

Casimir energy of SCFTs on SD−1 × R. It is also interesting to compare them with the

Casimir energy of the dual AdSD+1 background. The Casimir energy is zero in all even

dimensional AdS spacetimes [17], but is nonzero and proportional to the number of degrees

of freedom of the dual CFT in odd dimensional AdS.

We first study 4d N = 1 SCFT. The unrefined superconformal index contains one

fugacity x conjugate to ǫ + j, where ǫ is the energy and j is the SU(2)L ⊂ SO(4) Cartan

which rotates S3. Suppose that the theory contains nv vector multiplets and chiral multi-

plets labeled by i with R-charge ri for the complex scalar, in N = 1 language. Normally,

the index is calculated in a combinatoric way by going to a free theory limit, or more

delicately by going to a UV theory via continuous deformations (such as RG flows). The

elementary quantity is what is called the letter index. In general, the letter indices for a

chiral multiplet with R-charge r and a vector multiplet are given by [54, 55]

fch(x) =
x3r/2 − x3(2−r)/2

(1− x3/2)2
, fvec(x) =

2x3 − 2x3/2

(1− x3/2)2
, (B.1)

in which the letters are weighted as xǫ+j . The full index is given by multiplying to each

letter index the character of the field under the gauge group, then taking the Plethystic

exponential. The final index is obtained by projecting to a gauge singlet.

Although the above combinatoric method captures the information on the spectrum

of BPS states, one would obtain extra multiplicative factor if one evaluates the index by a

path integral. This formally takes the form of the zero point energy of the vacuum:

xǫ0 with ǫ0 ≡
1

2
tr
[

(−1)F (ǫ+ j)
]

. (B.2)
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Whenever a free theory description is available (which is the case for many 4d indices that

we can compute), the trace is taken over all the modes of fields. This summation should

be regulated. Since we are considering a supersymmetric path integral which preserves the

SUSY commuting with ǫ + j, a natural (but not compulsory, as the Casimir energy-like

quantity appears to depend on regulator/renormalization, which is not unique in general

without symmetry) regularization is to weight the states with their ǫ+j charge. So inserting

a factor xǫ+j with x < 1 as a regulator inside the trace of (B.2), one finds that [40]

ǫ0 =
1

2
lim

x→1−
x
d

dx
f(x) , (B.3)

where f(x) is the summation of letter indices of all fields in the theory.

The above regularization is not the usual one which is used to calculate the vacuum

Casimir energy, which is either energy regulator (not ǫ+ j) or the zeta function regulariza-

tion. For instance, had one been using the energy regulator, the trace over j would have

been zero from rotation symmetry and ǫ0 would have been the Casimir energy. However,

this Casimir energy is not the same as (B.3). One can check this for a simple model ad-

mitting a free theory limit. For instance, in the case of free 4d N = 4 SYM with U(N)

gauge group, one finds

(ǫ0)true =
1

2
lim

x→1−
tr
[

(−1)F ǫ xǫ
]

=
3N2

16
,

1

2
lim

x→1−
tr
[

(−1)F j xǫ
]

= 0 (B.4)

but

(ǫ0)index = lim
x→1−

tr
[

(−1)F (ǫ+ j) xǫ+j
]

=
2N2

9
. (B.5)

In all calculations, we have set the radius of S3 to 1. In the index, the former regulator is

forbidden by SUSY. In the latter regularization, j also acquires nonzero value. If nonzero,

all index version of ‘vacuum charges’ are naturally expected scale like N2.

The ‘index Casimir energy’ defined by (B.3) can be calculated in general as follows.

Defining x = e−β and expanding the expression in (B.3) for small β, one obtains

x

2

df(x)

dx
= − 2

3β2

(

nv +
∑

i

(ri − 1)

)

+
1

8

(

nv +
∑

i

(2(ri − 1)3 − (ri − 1))

)

+ · · · . (B.6)

Renormalizing away the first divergent term to zero, if the coefficient is nonzero, the second

term would be ǫ0. It is interesting to compare this with the a and c central charges of the

SCFT, given by [56–58]

a =
3

32
(3trR3 − trR) =

3

32

[

2nv + 3
∑

i

(ri−1)3 −
∑

i

(ri−1)

]

c =
1

32
(9trR3 − 5trR) =

1

32

[

4nv + 9
∑

i

(ri−1)3 − 5
∑

i

(ri−1)

]

. (B.7)

From these, one finds that ǫ0 is related to a and c by

ǫ0 =
2

9
a+

2

3
c . (B.8)
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Thus, one finds that ǫ0 calculated from the index is always a universal combination of the

two central charges. We also mention in passing that one finds

a− c =
1

16

(

nv +
∑

i

(ri − 1)

)

, (B.9)

so that the UV divergence given by the first term of (B.6) is zero when a = c. The

last property holds for CFT models with large N gravity duals on AdS5 times a smooth

5-manifold.

It is also interesting to compare our index Casimir energy with the proper Casimir

energy. In a QFT having a deformation to a free limit, one can simply calculate it as we

did it above for the N = 4 theory. One can also calculate it from the AdS5 gravity dual if

it exists. We have studied many 4d SCFT with gravity duals, in which case we can study

the true Casimir energy from the gravity dual. We find that the Casimir energy and the

index version of it satisfies a relation

(ǫ0)true
(ǫ0)index

=
27

32
, (B.10)

which is obvious for the N = 4 SYM from (B.4), (B.5). This ratio should be universal,

as a = c is proportional to ℓ3

G of AdS5 (ℓ: radius, G: Newton constant), which in turn is

proportional to the Casimir energy.

For 3 dimensional field theories, some of them with AdS4 gravity duals, the letter

indices always contain a factor x1/2

1+x when the scale dimension of matter fields is canonical.

x is again conjugate to ǫ + j, where j is the angular momentum on S2. From this, one

obtains limx→1
df
dx = 0. Therefore, the Casimir energy calculated from the field theory is

zero, just like the true Casimir energy. For non-canonical R-charges with 3d N = 2 SUSY,

one finds a factor [59]

f(x) =
xh − x2−h

1− x2
(B.11)

for each chiral multiplet, from which one obtains the vanishing Casimir energy as well.

Finally, we study the index Casimir energies of 6d SCFT. We discuss it from the

gravity dual of the large N (2, 0) theory. The gravity Casimir energy on an AdS7 with

radius ℓ and Newton constant G is given by [17]10

− 5π2ℓ4

128G
. (B.12)

Using the relation N3 = 3π2ℓ5

16G , one obtains

(ǫ0)gravity = −5N3

24ℓ
. (B.13)

Like our index Casimir energy, (B.13) is negative and scales like N3.

10[17] actually calculates the Casimir energy from the Kerr-AdS7 black hole with single rotation (j1 6= 0,

j2 = j3 = 0 in our notation) by taking out the black hole mass from the stress energy tensor. It still depends

on the rotation parameter, which we turned off to obtain (B.12).

– 38 –



J
H
E
P
0
5
(
2
0
1
3
)
1
4
4

References

[1] C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109

[hep-th/9410167] [INSPIRE].

[2] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85

[hep-th/9503124] [INSPIRE].

[3] I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes,

Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].

[4] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[5] N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory,

Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

[6] E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

[7] O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of

interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148

[hep-th/9707079] [INSPIRE].

[8] O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2,0) superconformal

theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117]

[INSPIRE].

[9] M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011

[arXiv:1012.2880] [INSPIRE].

[10] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and

Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

[11] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of

M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].

[12] N. Lambert and C. Papageorgakis, Nonabelian (2,0) Tensor Multiplets and 3-algebras,

JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].

[13] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

arXiv:1211.0144 [INSPIRE].

[14] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[15] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[16] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[17] A.M. Awad and C.V. Johnson, Higher dimensional Kerr - AdS black holes and the AdS/CFT

correspondence, Phys. Rev. D 63 (2001) 124023 [hep-th/0008211] [INSPIRE].

[18] S. Bhattacharyya and S. Minwalla, Supersymmetric states in M5/M2 CFTs,

JHEP 12 (2007) 004 [hep-th/0702069] [INSPIRE].

[19] J. Kallen, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D

Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]

[INSPIRE].

– 39 –

http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167
http://inspirehep.net/search?p=find+EPRINT+hep-th/9410167
http://dx.doi.org/10.1016/0550-3213(95)00158-O
http://arxiv.org/abs/hep-th/9503124
http://inspirehep.net/search?p=find+EPRINT+hep-th/9503124
http://dx.doi.org/10.1016/0550-3213(96)00295-7
http://arxiv.org/abs/hep-th/9604089
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B475,164
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1007/s00220-011-1253-6
http://arxiv.org/abs/1007.3837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
http://arxiv.org/abs/hep-th/9507121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9507121
http://arxiv.org/abs/hep-th/9707079
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707079
http://arxiv.org/abs/hep-th/9712117
http://inspirehep.net/search?p=find+J+Adv.Theor.Math.Phys.,2,119
http://dx.doi.org/10.1007/JHEP02(2011)011
http://arxiv.org/abs/1012.2880
http://inspirehep.net/search?p=find+J+JHEP,1102,011
http://dx.doi.org/10.1007/JHEP01(2011)083
http://arxiv.org/abs/1012.2882
http://inspirehep.net/search?p=find+J+JHEP,1101,083
http://dx.doi.org/10.1007/JHEP12(2011)031
http://arxiv.org/abs/1110.2175
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2175
http://dx.doi.org/10.1007/JHEP08(2010)083
http://arxiv.org/abs/1007.2982
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2982
http://arxiv.org/abs/1211.0144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0144
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1103/PhysRevD.63.124023
http://arxiv.org/abs/hep-th/0008211
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008211
http://dx.doi.org/10.1088/1126-6708/2007/12/004
http://arxiv.org/abs/hep-th/0702069
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702069
http://dx.doi.org/10.1007/JHEP08(2012)157
http://arxiv.org/abs/1206.6008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6008


J
H
E
P
0
5
(
2
0
1
3
)
1
4
4

[20] M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098]

[INSPIRE].

[21] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[22] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal

Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

[23] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The

Hagedorn - deconfinement phase transition in weakly coupled large-N gauge theories, Adv.

Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

[24] K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the

Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].

[25] H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global

Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].

[26] J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact

geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

[27] D. Harland and C. Nolle, Instantons and Killing spinors, JHEP 03 (2012) 082

[arXiv:1109.3552] [INSPIRE].

[28] M. Wolf, Contact Manifolds, Contact Instantons and Twistor Geometry,

JHEP 07 (2012) 074 [arXiv:1203.3423] [INSPIRE].

[29] M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold

invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].

[30] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[31] M. Tierz, Soft matrix models and Chern-Simons partition functions,

Mod. Phys. Lett. A 19 (2004) 1365 [hep-th/0212128] [INSPIRE].

[32] S. de Haro and M. Tierz, Brownian motion, Chern-Simons theory and 2−D Yang-Mills,

Phys. Lett. B 601 (2004) 201 [hep-th/0406093] [INSPIRE].

[33] Y. Tachikawa, On S-duality of 5d super Yang-Mills on S1, JHEP 11 (2011) 123

[arXiv:1110.0531] [INSPIRE].

[34] B.I. Zwiebel, Charging the Superconformal Index, JHEP 01 (2012) 116 [arXiv:1111.1773]

[INSPIRE].

[35] E. Witten, Quantum Field Theory and the Jones Polynomial,

Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

[36] M. Mariño, Lectures on localization and matrix models in supersymmetric

Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

[37] J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies,

JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].

[38] P. Yi, Anomaly of (2,0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165]

[INSPIRE].

[39] K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N=(2,0) field

theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].

[40] S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory,

Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172]

[INSPIRE].

– 40 –

http://dx.doi.org/10.1088/1126-6708/2000/11/023
http://arxiv.org/abs/hep-th/0005098
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005098
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,275,209
http://dx.doi.org/10.1088/1126-6708/2008/02/064
http://arxiv.org/abs/0801.1435
http://inspirehep.net/search?p=find+J+JHEP,0802,064
http://arxiv.org/abs/hep-th/0310285
http://inspirehep.net/search?p=find+EPRINT+hep-th/0310285
http://dx.doi.org/10.1016/j.nuclphysb.2012.08.007
http://arxiv.org/abs/1203.0371
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0371
http://dx.doi.org/10.1007/JHEP10(2012)142
http://arxiv.org/abs/1206.6781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6781
http://dx.doi.org/10.1007/JHEP05(2012)125
http://arxiv.org/abs/1202.1956
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1956
http://dx.doi.org/10.1007/JHEP03(2012)082
http://arxiv.org/abs/1109.3552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3552
http://dx.doi.org/10.1007/JHEP07(2012)074
http://arxiv.org/abs/1203.3423
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3423
http://dx.doi.org/10.1007/s00220-004-1194-4
http://arxiv.org/abs/hep-th/0207096
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207096
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1142/S0217732304014100
http://arxiv.org/abs/hep-th/0212128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212128
http://dx.doi.org/10.1016/j.physletb.2004.09.033
http://arxiv.org/abs/hep-th/0406093
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406093
http://dx.doi.org/10.1007/JHEP11(2011)123
http://arxiv.org/abs/1110.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0531
http://dx.doi.org/10.1007/JHEP01(2012)116
http://arxiv.org/abs/1111.1773
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1773
http://dx.doi.org/10.1007/BF01217730
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,121,351
http://dx.doi.org/10.1088/1751-8113/44/46/463001
http://arxiv.org/abs/1104.0783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0783
http://dx.doi.org/10.1088/1126-6708/1998/09/004
http://arxiv.org/abs/hep-th/9808060
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808060
http://dx.doi.org/10.1103/PhysRevD.64.106006
http://arxiv.org/abs/hep-th/0106165
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106165
http://dx.doi.org/10.1016/S0550-3213(00)00148-6
http://arxiv.org/abs/hep-th/0001205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0001205
http://dx.doi.org/10.1016/j.nuclphysb.2012.07.015
http://arxiv.org/abs/0903.4172
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4172


J
H
E
P
0
5
(
2
0
1
3
)
1
4
4

[41] E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian

symmetry, hep-th/0307041 [INSPIRE].

[42] C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074] [INSPIRE].

[43] E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541

[hep-th/9511030] [INSPIRE].

[44] N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R4 and (2,0) superconformal

six-dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [INSPIRE].

[45] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

[46] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238 [INSPIRE].

[47] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[48] Z. Bern, J.J. Carrasco, L.J. Dixon, M.R. Douglas, M. von Hippel and H. Johansson, D = 5

maximally supersymmetric Yang-Mills theory diverges at six loops,

Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].

[49] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Deconstructing (2,0) Proposals,

arXiv:1212.3337 [INSPIRE].

[50] M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS3,

JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].

[51] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[52] D. Young, Wilson Loops in Five-Dimensional super-Yang-Mills, JHEP 02 (2012) 052

[arXiv:1112.3309] [INSPIRE].

[53] C. Pope, Eigenfunctions and spin (c) structures in CP 2, Phys. Lett. B 97 (1980) 417

[INSPIRE].

[54] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[55] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the Superconformal Index of N = 1 IR

Fixed Points: A Holographic Check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].

[56] D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for

central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543

[hep-th/9708042] [INSPIRE].

[57] D. Anselmi, J. Erlich, D. Freedman and A. Johansen, Positivity constraints on anomalies in

supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].

[58] K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a,

Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[59] Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with

general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

– 41 –

http://arxiv.org/abs/hep-th/0307041
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307041
http://dx.doi.org/10.1016/0550-3213(94)90097-3
http://arxiv.org/abs/hep-th/9408074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408074
http://dx.doi.org/10.1016/0550-3213(95)00625-7
http://arxiv.org/abs/hep-th/9511030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9511030
http://dx.doi.org/10.1007/s002200050490
http://arxiv.org/abs/hep-th/9802068
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802068
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1103/PhysRevD.87.025018
http://arxiv.org/abs/1210.7709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7709
http://arxiv.org/abs/1212.3337
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3337
http://dx.doi.org/10.1007/JHEP02(2011)004
http://arxiv.org/abs/1009.6087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6087
http://dx.doi.org/10.1007/JHEP05(2012)159
http://arxiv.org/abs/1012.3210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
http://dx.doi.org/10.1007/JHEP02(2012)052
http://arxiv.org/abs/1112.3309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3309
http://dx.doi.org/10.1016/0370-2693(80)90632-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B97,417
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510060
http://dx.doi.org/10.1007/JHEP03(2011)041
http://arxiv.org/abs/1011.5278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5278
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://arxiv.org/abs/hep-th/9708042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9708042
http://dx.doi.org/10.1103/PhysRevD.57.7570
http://arxiv.org/abs/hep-th/9711035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711035
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
http://dx.doi.org/10.1007/JHEP04(2011)007
http://arxiv.org/abs/1101.0557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0557

	Introduction
	Maximal SYM on the 5-sphere
	Motivation from Abelian theories
	Non-Abelian theories

	5-sphere partition function as a 6d index
	Perturbative partition function and Casimir energies
	Nonperturbative corrections and AdS(7) gravity duals
	Generalizations

	Discussions
	Spinors, spherical harmonics and determinants
	Indices and Casimir energies in various dimensions

