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Transition metal dichalcogenides (TMDs) have been
receiving intensive attention because of their potential

use in a wide range of applications. Molybdenum disulfide
(MoS2) thin films, in particular, have found unique uses in
catalysis,1 sensor,2 piezoelectricity,3 electrical energy storage,4

hydrogen storage,5 optoelectronics, and transistors.6,7 In
addition, the tunability of the large intrinsic bandgap (1.2−
1.8 eV) and the high mechanical flexibility of MoS2 thin films
facilitate its use as a semiconductor for flexible electronic
devices.8 These versatile applications demand large-scale
synthesis of MoS2 thin films with high uniformity in thickness
and composition. Significant efforts have been devoted to
preparing MoS2 thin films, including mechanical exfoliation
with scotch tape,9 chemical exfoliation in a liquid phase and
coating,10 chemical vapor deposition (CVD),11,12 and hydro-
thermal synthesis and coating.13,14 Although the CVD process
has been successfully used to produce high-quality MoS2 thin
films, it is limited with respect to low-cost synthesis and scale-
up for massive production.8,15,16 Coating a solution phase ink
on a substrate cannot provide an ultrathin film with uniform
thickness over large area. In terms of cost and scalability, a two-
step synthesis including the solution-based coating of a
precursor and then the formation of a MoS2 thin film would
be an advantageous alternative. Recently, the polymer-assisted
deposition (PAD) has been used successfully to generate
uniform metal oxide thin films.17,18 In PAD, a polymer is used
to stabilize the charged metal precursor and enables uniform
coating of the polymer−precursor complex. Even though the
PAD approach is immediately applicable to the synthesis of
two-dimensional thin films, it has been limited to the synthesis
of metal oxide thin films.
There are several challenging issues in the two-step film

formation on a target substrate. Ideally, the synthesis of MoS2
thin films should (i) be a scalable process with high uniformity
in thickness and chemical composition, (ii) allow precise
control of the thickness, (iii) not require a supply of additional
sulfur during the synthesis, (iv) enable low-temperature
synthesis, and (v) result in a product with high crystal quality.
So far, only a few reports have been published for MoS2 thin
films.19−21 Lie et al. synthesized a highly crystalline centimeter-
scale MoS2 thin film by dip-coating a precursor solution onto
an insulating substrate.13 The precursor film was converted into
MoS2 via a two-step thermolysis (at 500 and 1000 °C) with a
flux of sulfur. Lee et al. exploited the self-assembly of precursor
molecules into long lines during the dip-coating process using

high-temperature thermolysis with a sulfur flux to produce
MoS2 wires.22 Lim et al. coated a precursor dissolved in
ethylene glycol onto various substrates and then converted the
precursor into MoS2 at a relatively low temperature (450 °C).23

Kwon et al. reported the synthesis of a MoS2 thin-film catalyst
for the hydrogen evolution reaction. They used a two-step
annealing process, with the first step at 500 °C under flowing
N2 and H2 and the second step at 900 °C under a reducing
ambient atmosphere without an additional sulfur source.24 A
few more studies involving similar procedures for the synthesis
of MoS2 thin films on Si wafers have also been published.25−27

The two-step approach developed thus far shares a common
concept: coating a pure precursor onto a substrate and
decomposing it at a high temperature to form a MoS2 thin
film. A precursor solution without including other materials is
used to prevent possible contamination of the product thin
film. However, such precursor solutions dewet readily on most
substrates; this obstructs the formation of uniform precursor
thin films and precludes precise control of the thickness. Scale-
up of the production is another difficulty associated with the
use of such pure precursor solutions. Because sulfur evaporates
during synthesis at high temperatures, a continuous supply of
the sulfur source is typically used to maintain the stoichiometry
of the product film. This sulfurization prevents the reproducible
fabrication of thin films with the same performance because the
elemental composition of the product cannot be controlled by
manipulating the initial solution conditions. The synthesis of
MoS2 thin films requires the development of a reproducible,
scalable process that guarantees the formation of uniform
ultrathin films with precise thickness control.
In this study, we develop a highly scalable coating process by

using the polymer-assisted deposition and apply thermolysis at
a relatively low temperature (700 °C) without sulfurization.
This process enables fine control of the precursor film, which
leads to precise thickness control of the resulting MoS2 film
(≥2 nm). In addition, we demonstrate the fabrication of a
MoS2-based photodetector with a broad spectral response and
excellent performance, as indicated by its fast response time
(<1.0 ms).
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Our strategy for the large-area synthesis of the MoS2 films is
described in Figure 1A. The synthesis included the formation of

a precursor−polymer complex thin film comprising anhydrous
ammonium tetrathiomolybdate (ATM) precursor and linear-
poly(ethylenimine) (L-PEI). The choice of complexing
polymer was the key. The complexing polymer plays as coating
agent and precursor binder by ionic interaction. The polymer
helps uniform coating over a large area without dewetting. L-
PEI decomposes starting at a relatively low temperature of 170
°C and obtains complete thermolysis at relatively low
temperature of about 400 °C without carbon residue.28 ATM
and L-PEI formed a complex in DMF by ionic interaction with
molecules so that they were quickly aggregated in the solution
phase (Supporting Information, Figure S1). The complexation
between ATM and L-PEI was confirmed by the shift of the
Raman signal from 407 to 432 cm−1 (Supporting Information,
Figure S2). The peak shift comes from the change in the
vibration mode between Mo and S atoms in ATM.29 In order
to keep the solution phase without aggregation, we added a
small amount of ethanolamine in the complex aggregate
solution to dissolve the aggregate in the solution. The binding
between ATM and ethanolamine allowed only partial complex-
ation between the ATM and L-PEI; hence, uniform coating of
the complex film via conventional coating techniques was

readily achieved over the entire area of the substrate. The
thermolysis of the precursor complex film generated a MoS2
thin film. The thermolysis was performed at 700 °C without an
additional sulfur source under an inert environment comprising
4% H2 and 96% Ar mixture gas. To prevent the formation of
oxide contaminants in the as-synthesized MoS2 thin films, the
precursor complex films were kept under vacuum at room
temperature for 30 min. The vacuum process was used to
remove oxygens and water at a minimized level to prevent
possible oxidation of the film during the heat treatment process
and to help the conversion to MoS2 without additional supply
of the source. Then, the chamber was filled with inert gas and
the temperature was increased to 700 °C within 10 min using a
rapid thermal annealing system. The anhydrous ATM was
converted into MoS3 in the range of 120−260 °C and then
transformed into 2H-MoS2 above 400 °C.30,31

Figure 1B shows a camera image of the MoS2 thin film
synthesized on a 6-in. Si wafer with a thick SiO2 layer (300 nm)
using the process described above. The uniform color over the
whole area indicates the uniformity in the thickness of the film.
The film thickness in the Figure was ∼9.1 nm (Supporting
Information, Figure S3), and the average surface roughness of
the film was less than 1 nm (Figure 1C). The thickness of the
precursor complex film and consequently that of the MoS2 thin
film could be controlled by simply adjusting the concentration
of the precursor in the coating solution. Figure 1D displays the
color difference according to the film thicknesses of the
precursor complex films and the MoS2 films. Figure 1E shows
the relationship between the precursor complex thickness and
the MoS2 film thickness. The MoS2 thin films with controlled
thicknesses (2−30 nm) were reproducibly prepared by spin-
coating the precursor solutions with concentrations ranging
from 20 mM to 300 mM. The spin-coating condition was fixed
at 3000 rpm for 60 s in all the experiments. Notably, thicker
films (e.g., 270 nm) could be prepared by bar-coating the
precursor solution with a high precursor concentration
(Supporting Information, Figure S4). The thickness ratio (tf/
tp) between the precursor complex film (tp) and the
corresponding MoS2 film thickness (tf) was constant, i.e., on
an average, tf = 0.39tp; this permitted precise control of the
MoS2 film thickness via adjusting the precursor concentration.
The surface roughness increased with the thickness of the MoS2
film (Supporting Information, Figure S5). The surface
roughness of the precursor complex film governs the surface
roughness of the MoS2 film; therefore, careful coating of the
precursor complex in a good coating facility can produce MoS2
thin films with extreme flatness.
Figure 2 shows the transmission electron microscopy (TEM)

images of the MoS2 thin film shown in Figure 1B. The thin film
was transferred to a TEM grid using the poly(methyl
methacrylate) (PMMA)-based transfer method,13 as described
in the Supporting Information. Figure 2A shows a low-
magnification TEM image, which shows the uniformity of the
film over a large area. The fractures occurred during the transfer
process. The high crystallinity of the thin film is evident from
the high-resolution TEM (HR-TEM) image of the film (Figure
2B). The lattice distances of 0.274 and 0.161 nm match well the
[100] and [110] planes of MoS2, respectively. The selected-area
electron diffraction (SAED) pattern in the inset image also
confirms the hexagonal crystal structure of MoS2. Figure
2C,D,E shows the cross-sectional HR-TEM images of MoS2
films with different thicknesses. The thickness of MoS2 film is
controllable from about 2 nm to about 30 nm by spin coating.

Figure 1. (A) Schematic illustration to form a polymer−precursor
complex thin film and its conversion to a MoS2 thin film on an SiO2/Si
wafer. (B,C) Digital image and three-dimensional AFM image of the
as-synthesized MoS2 thin film on a 6-in. SiO2/Si wafer by spin-coating
a 100 mM precursor solution. (D) Color changes by the thickness
increase of the precursor complex films and the MoS2 thin films. (E)
Relationship between the film thickness and the precursor
concentration in the complex solution. Black, red, and blue lines
represent the thicknesses of the complex−precursor thin film (tp) and
the MoS2 thin film (tf) and their thickness ratio (tf/tp), resptectively.
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From Figure 2E, the interlayer distance and the thickness were
determined to be 0.67 and 9 nm, respectively; the film was also
found to comprise 13−14 layers aligned along the c-axis in
Figure 2E. Figure 2F shows the images obtained using cross-
sectional scanning TEM with high-angle annular dark-field
(STEM-HAADF) and the results of the energy-dispersive X-ray
spectroscopic (EDS) analysis of the Mo and S atoms. The
atomic ratio was stoichiometric (Mo:S = 1:2) over the whole
detection range, indicating the successful formation of an MoS2
thin film. The grain size of synthesized MoS2 film was about 13
nm which was measured from HR-TEM images (Supporting
Information, Figure S6).
The as-synthesized thin film was analyzed via X-ray

photoelectron spectroscopy (XPS) and Raman spectroscopy
to assess the precise stoichiometry, detect trace amounts of any
unreacted precursor, and determine the oxidation of the film.
Figure 3A,B shows the XPS Mo 3d and S 2p spectra of the
large-area MoS2 film on the SiO2/Si wafer. The Mo binding
energies of 229.6 and 232.7 eV correspond to the Mo 3d5/2 and
Mo 3d3/2 peaks, respectively. The S binding energies of 162.5
and 163.7 eV correspond to the S 2p3/2 and S 2p1/2 peaks,
respectively. These binding energies match the reported values
of the MoS2 crystal.

32 The stoichiometric ratio of Mo and S was
obtained by integrating the peak area of the XPS spectra, and
the value was found to be Mo:S = 1:1.96. The positions of the
E2g and A1g peaks for the in-plane and out-of-plane vibrational
modes, respectively, are known to be dependent on the
thickness of the MoS2 thin film.33 MoS2 thin films grown by the

solution process are considered to have Raman intensities lower
than thin films grown by CVD because of their poor
crystallinity. The Raman spectra of the as-synthesized MoS2
films with various thicknesses are summarized in Figure 3C.
The E2g peak position gradually decreased from 383 to 380
cm−1, and the A1g peak position shifted from 402 to 404 cm−1

as the thickness of the as-synthesized MoS2 film increased from
2 to 32 nm. The number of MoS2 layers can be estimated from
the difference between the E2g and the A1g Raman modes
(Δk).34,35 The value Δk = 22 cm−1 at 20 mM indicates a
stacking of 2−3 MoS2 layers; this is in good agreement with the
2 nm-thick film measured via atomic force microscopy (AFM).
The photoluminescence (PL) spectra of the 2 nm-thick film has
two peaks at around 660 nm (major) and 610 nm (minor),
respectively. However, the PL intensity was significantly
decreased with increasing thickness of MoS2 films by bandgap
change in Figure 3D.10,36 Figure 3E shows the X-ray diffraction
(XRD) pattern of the MoS2 thin film prepared by bar-coating
the 300-mM precursor solution (270 nm in thickness). All of
the diffraction peaks are indexed to the 2H-MoS2 symmetry
(JCPDS 37-1492).37 In particular, the detected major peaks are
based on [100] family planes, indicating horizontal alignment
of the MoS2 layers within the thin film.
We used the as-synthesized MoS2 thin films to fabricate

sensitive photodetectors. To measure the photoelectrical
properties of the thin films, we fabricated a two-probe
photodetector without any gate bias (electrode channel length
= 500 μm, active-layer area = 0.5 mm2). Figure 4A shows the
current (I)−voltage (V) characteristics of the photodetector
fabricated using the 9 nm MoS2 film. White light source was
vertically projected onto the device under various illumination
powers (30−140 μW). The current in the dark state was 8 nA
at a 3 V bias voltage. The current increased to 1.47 μA at 30
μW and to 13.5 μA at 140 μW (on−off ratio = ∼104). The
responses to green (532 nm at 1 mW) and red lasers (633 nm
at 1 mW) are shown in Supporting Information Figure S7.
Figure 4B shows the dependence of the on−off ratios on the
thickness of the MoS2 thin films under the 532 nm green laser.
The on−off ratio increased from ∼101 to ∼104 as the thickness
of the MoS2 film increased from 2 to 9 nm; it then decreased to
∼102 at 32 nm (Supporting Information, Figure S8). On the
basis of this result, the 9 nm-thick MoS2 film was chosen as the
photodetector active layer. The dependence of the on−off ratio

Figure 2. (A) Transmission electron microscope (TEM) image of the
MoS2 film (thickness = 9 nm) transferred onto a TEM grid. The
cracks were formed during the transfer process. (B) High-resolution
TEM image and diffraction pattern (in the inset) of the MoS2 film. (C,
D, and E) Cross-sectional TEM images of the MoS2 films with
different thicknesses. (E) STEM-HAADF image and elemental
mapping of Mo (in green) and S (in red).

Figure 3. XPS spectra of the Mo 3d (A) and S 2p (B) binding energies
of the MoS2 films (thickness = 9 nm). (C) Raman spectra of the MoS2
films with different thicknesses. (D) Photoluminescence spectra of the
MoS2 films with thickness variation. (E) XRD pattern of a MoS2 film
(thickness = 270 nm) prepared by bar-coating.
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on the film thickness is not clearly understood. In the crystal
thin films prepared by CVD, the bandgap of the film decreases
with increasing thickness,38,39 so the off-current of the
photodetector increases and the on−off ratio decreases. Clear
understanding of the on−off ratio in this study requires several
pieces of information: orientation and grain size of the crystals
depending on the film thickness, interaction between the layers
in the nanosized grains, and crystal structure and defects in the
grain boundary. Those are critical information to predict the
photoresponsivity of the film. The studies are left as our future
task. The photoswitching behavior of the MoS2 (9 nm in
thickness) photodetector is shown in the time-resolved
photocurrent response (Figure 4C). The green laser (532
nm, 1 mW) was irradiated at 3.0 V bias and turned on−off
repeatedly with a periodicity of 10 s. The current sharply
increased to 25 μA and then returned to 8 nA when the laser
was turned on and off. Figure 4D shows the photocurrent
responses of the MoS2 films with various thicknesses in a higher
time resolution. When the thickness was 2.0 nm, the response
time (τr = 2 ms) and the decay time (τd = 4.5 ms) differed
substantially. This substantial time difference between τr and τd
might have originated from the presence of numerous defect
states when the number of layers was small. However, when the
thickness was larger than 6.0 nm, the photocurrent response
was accomplished within 1.0 ms. This result can be attributed
to a decrease in the defect density when the number of triple
layers is larger than 10.
In summary, we successfully demonstrated a highly scalable

two-step synthesis of MoS2 thin films without sulfurization
during the thermolysis step. Using a polymer that can form a
complex with the precursor enabled precise control of the
thickness (tp) of the polymer−precursor complex films; this
permitted quantitative control of the thickness (tf) of the MoS2
thin film (tf = 0.39tp, tf ≥ 2 nm) via adjustment in the precursor
concentration. The synthesized MoS2 film was uniform in
thickness in a 6-in. wafer scale in this study. The photocurrent
response of the as-synthesized MoS2 films was dependent on

the thickness of the film. When the film thickness was larger
than 6 nm, the film exhibited a fast photoresponse (<1 ms), a
high on−off ratio (∼104) at low bias voltages, and highly stable
reliability during repeated irradiation tests.
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