
Approximations for the Queue Length Distributions of
Time-Varying Many-Server Queues

Jamol Pender
School of Operations Research and Information Engineering

Cornell University
jjp274@cornell.edu

Young Myoung Ko
Department of Industrial and Management Engineering

Pohang University of Science and Technology
youngko@postech.ac.kr

January 6, 2016

Abstract

This paper presents a novel methodology for approximating the queue length (the
number of customers in the system) distributions of time-varying non-Markovian many-
server queues (e.g., Gt/Gt/nt queues), where the number of servers (nt) is large. Our
methodology consists of two steps. The first step uses phase-type distributions to
approximate the general inter-arrival and service times, thus generating an approxi-
mating Pht/Pht/nt queue. The second step develops strong approximation theory to
approximate the Pht/Pht/nt queue with fluid and diffusion limits. However, by naively
representing the Pht/Pht/nt queue as a Markov process by expanding the state space,
we encounter the lingering phenomenon even when the queue is overloaded. Lingering
typically occurs when the mean queue length is equal or near the number of servers,
however, in this case it also happens when the queue is overloaded and this time is not
of zero measure. As a result, we develop an alternative representation for the queue
length process that avoids the lingering problem in the overloaded case, thus allowing
for the derivation of a Gaussian diffusion limit. Finally, we compare the effectiveness
of our proposed method with discrete event simulation in a variety parameter settings
and show that our approximations are very accurate.

1 Introduction

Real-world applications of large-scale queueing systems such as data centers, call centers,
and healthcare centers have time-varying and dynamic behavior. Furthermore, the arrival
and service processes are not necessarily Markovian in general (Brown et al. [8], Arfeen
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et al. [1], Nelson and Taaffe [32]). Many of the recent studies on large-scale non-Markovian
queues rely on the asymptotic approaches that utilize fluid and diffusion limits as described
in Billingsley [5] and Whitt [46]. Research on non-Markovian systems has progressed to
the point of analyzing underloaded systems (a.k.a. the offered-load model, infinite-server
queues) due to their analytical or numerical tractability (Whitt [45], Glynn [14], Eick et al.
[11], Nelson and Taaffe [32, 31]). Studies on the delay model, e.g., Mt/Gt/nt, Gt/Mt/nt,
Gt/Gt/nt queues, have been conducted from the context of fluid queues or heavy traffic
diffusion models in the Halfin-Whitt regime (Halfin and Whitt [15], Puhalskii and Reiman
[42], Pang and Whitt [37], Reed [43], Whitt [47], Liu and Whitt [24, 26, 25]).

This paper uses the uniform acceleration method coupled with strong approximations and
accelerates parameters while keeping the traffic intensity constant, see for example (Kurtz
[23], Mandelbaum et al. [27], Hampshire et al. [18]). Kurtz [23] establishes strong approxima-
tion theorems for state-dependent continuous time Markov chains (CTMCs) having differ-
entiable rate functions. Extending Kurtz [23], Mandelbaum et al. [27] consider time-varying
parameters and non-differentiable rate functions such as min(·, ·) that commonly occur in the
analysis of queues. Mandelbaum et al. [28] prove that the strong approximation results de-
veloped in Kurtz [23] can also be applied when the fluid limit stays at the non-differentiable
points of rate functions for a measure-zero amount of time. However, in some queueing
processes, it is hard to avoid the measure-zero assumption. See for instance Niyirora and
Pender [34] and Hampshire and Massey [17, 16], Hampshire et al. [20, 19] where optimal
staffing methods force staffing at the non-differentiable points.

To address the issue of when the fluid limit is near the non-differentiable points of the
rate functions for more than a measure zero amount of time Ko and Gautam [22] propose a
Gaussian-based approximation method that achieves better approximation quality. Massey
and Pender [29, 30] improve the result of Ko and Gautam [22] by incorporating the skewness
of the queueing process and by expanding the queue length process in terms of Hermite
polynomials, which are orthogonal with respect to the Gaussian distribution. In the same
spirit, the work of Pender [38, 39, 40, 41] extends the results of Massey and Pender [30]
and add the impact of the kurtosis through a Gram-Charlier expansion and using other
distributions as closure approximations. More work by Engblom and Pender [12] also proves
that spectral expansions as closure approximations for the functional Kolmogorov forward
equations of the queue length process are provably optimal in an L2 sense for approximating
the moments of nonstationary birth-death processes. Although the spectral approach offers
great insight especially for higher moments of the queue length processes, fluid and diffusions
also offer complementary insight for the sample path behavior of the queueing process.

In the spirit of fluid and diffusion limits, Liu and Whitt [24] prove a weak law of large
numbers limit for the Gt/GI/nt + GI queue and extend the work of Mandelbaum et al.
[27] in the sense that they consider non-Markovian inter-arrival, service and abandonment
times. However, the service times are not time-varying and the limit does not converge
almost surely as the limit in this work. In a follow-up paper, Liu and Whitt [25] provide a
heavy-traffic diffusion limit for Gt/M/st + GI queues. The methodology used by Liu and
Whitt [25] is to paste together the overloaded and underloaded intervals of the nonstationary
queueing process. Thus, they explicitly avoid the case where the number of servers is equal
to the fluid limit. As shown in Mandelbaum et al. [28], Ko and Gautam [22], Liu and
Whitt [25], it appears reasonable to approximate the queue length process with a Gaussian
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process. However, estimating the parameters of a Gaussian process depends on both fluid
and diffusion limits. Lastly, work by Reed [43] and Dai et al. [10] use the continuous mapping
approach to prove diffusion limits for queues with general and phase type service respectively.
Although this work was a significant advance in the many server literature, Reed [43], Dai
et al. [10] do not explore the impact of nonstationary arrival and service times and this work
generalizes their work in this regard. Lastly, since our approximations are for nonstationary
processes, the approximations are universally useful and apply in any regime.

Using phase-type distributions for approximating general distributions in queueing analy-
sis is not new, see for example Barbour [4]. The matrix-geometric method (MGM) described
in Neuts [33] is a well-known approach for the analysis of non-Markovian queues. MGM,
however, can only handle phase-type distributions with a small number of phases due to state
space explosion. Nelson and Taaffe [32] develop a method based on the partial-moment differ-
ential equations (PMDEs) for the analysis of Pht/Pht/∞ queues that accurately estimates
the moments of the number of entities in the system. The number of differential equations
to evaluate the first two moments is mA +mS − 1 +mAmS(mS + 1), where mA and mS are
the number of phases in the inter-arrival and service time distributions, respectively. The
result, however, is not applicable to the delay models, such as Pht/Pht/nt queues studied
in our paper. Creemers et al. [9] devise a phase-type approximation algorithm for small-to-
medium-sized queues (2-10 servers) using two-moment matching procedures, however, the
downfall is that the method does not scale well with the number servers and it has a high
computational cost when the number of servers is large. Our goal is to remove this depen-
dence on the number of servers since it is very limiting in a computational sense, especially
in large-scale service systems.

1.1 Main Contributions of Paper

The contributions of this work can be summarized as follows. First, we consider the dynam-
ics of a Gt/Gt/nt queue. The Gt/Gt/nt queueing model is relatively intractable since we
are unable to derive the exact distribution of the queue length as a function of time. Thus,
we first approximate the general and non-Markovian arrival and service distributions with
phase-type distributions with an appropriate number of phases. This reduces our problem
to analyzing the Pht/Pht/nt queue, which is more tractable than its general counterpart.
Second, we derive fluid and diffusion limits for a Pht/Pht/nt queue using uniform accelera-
tion coupled with strong approximations of time changed Poisson processes. Unfortunately,
when we naively keep track of the number of customers being served in each phase and the
number of customers in the system separately, we encounter the lingering issue; the fluid
limit stays at non-differentiable points during some intervals having positive measure. This
prevents us from deriving a Gaussian or continuous diffusion limit. Thus, another impor-
tant contribution of our work is our proposal of an alternative Markovian formulation of the
queueing process that enables us to successfully obtain the diffusion limit. One attractive
feature of our method is that the number of differential equations to obtain the fluid and
diffusion limits is O([mA + mS]2) and it does not depend on the number of servers, nt like
other numerical methods by Creemers et al. [9]. The number of phases used for approximat-
ing inter-arrival and service time distributions is 8-10 and the numerical solution is reached
in less than a minute using a commercial solver (e.g., MATLAB).
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1.2 Organization of Paper

The remainder of this paper is organized as follows. Section 2 describes the Gt/Gt/nt queue-
ing model and the problem settings. Section 3 builds a mathematical model for describing
the dynamics of the system for the Pht/Pht/nt queue. We explain the impact of the lin-
gering problem and introduce an alternative sample path representation for analyzing it.
Section 4 constructs the fluid and diffusion limit theorems as approximations for the sample
path dynamics of the queueing process in the finite server setting. Section 5 discusses the
infinite server setting and provides the fluid and diffusion limits for the infinite server queue-
ing model. Section 6 discusses the numerical examples used to validate the effectiveness of
our proposed approach. Section 7 concludes and offers suggestions for future research.

2 Problem description

We consider aGt/Gt/nt queue, a time-varying version of aG/G/n queue, with a general time-
varying arrival process, a general time-varying service time distribution, and a time-varying
number of servers. The system has an infinite capacity of waiting space and customers in the
waiting space are served under the first-come, first-served discipline. Let X(t) denote the
number of customers in the system at time t and x̄(t) denote the corresponding fluid limit.
We assume that the fluid limit (x̄(t)) alternates between the underloaded (i.e., x̄(t) < nt)
and overloaded (i.e.. x̄(t) > nt) regimes and hits the critically loaded regime (i.e. x̄(t) = nt)
at most a countable number of times. The performance measures of interest are E[X(t)],
Var[X(t)] and, if possible, the distribution of X(t) for all time 0 ≤ t ≤ T and T <∞.

More specifically, we analyze a Pht/Pht/nt queue as an approximation of the Gt/Gt/nt
queue since phase-type distributions are dense in all positive-support distributions and the
use of phase-type distribution in queueing analysis does not lose generality significantly
(Barbour [4], Whitt [45], and Asmussen et al. [3]). A phase-type distribution with m phases
represents the time taken from an initial state to an absorbing state of a continuous time
Markov chain with the following infinitesimal generator matrix:

Q =

(
0 0
s S

)
,

where 0 is a 1 ×m zero vector, s = is an m × 1 vector, and S is an m ×m matrix. Note
s = −Se where e is an m × 1 vector of ones. The matrix S and the initial distribution α
which is a 1 ×m vector identify the phase-type distributions. Finding the best phase-type
distribution for approximating a general distribution is beyond the scope of this paper, and
we refer to the reader to a large number of references [6, 21, 48, 7, 13, 36, 3, 35]. To give the
reader a better understanding of our methodology, we describe the fitting algorithm that we
use in Section 6.

We assume that our phase-type distributions have initial distributions, α and β, and
infinitesimal generator matrices, QA and QS, for the arrival process and service times re-
spectively. The number of phases in SA and SS is mA and mS respectively. The matrices,
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SA and SS, and the vectors, sA and sS can be expressed as:

SA =

 λ11 · · · λ1mA

...
...

...
λmA1 · · · λmAmA

 , sA = (λ10, . . . , λmA0)′ (2.1)

SS =

 µ11 · · · µ1mS

...
...

...
µmS1 · · · µmSmS

 , sS = (µ10, . . . , µmS0)′, (2.2)

where λjk’s and µil’s agree with the definition of the infinitesimal generator matrices, QA

and QS. Note that the time-varying extension can be achieved by replacing λjk and µil with
λjk(t) and µil(t) and making sure that their integrals are locally bounded away from infinity.

3 The Queueing model

With the phase-type distributions described in Section 2, we build a mathematical queueing
model to describe the dynamics of the Pht/Pht/nt queue. We assume that the system starts
with no customers.

𝑝𝑝1𝜆𝜆1
𝑝𝑝2𝜆𝜆2
𝑝𝑝3𝜆𝜆3

(1 − 𝑝𝑝1)𝜆𝜆1

(1-𝑝𝑝2)𝜆𝜆2
(1-𝑝𝑝3)𝜆𝜆3

𝜆𝜆4

𝑞𝑞1𝜇𝜇1 𝑞𝑞3𝜇𝜇3

(1 − 𝑞𝑞1)𝜇𝜇1

(1-𝑞𝑞2)𝜇𝜇2
(1-𝑞𝑞3)𝜇𝜇3

𝜇𝜇4

𝑃𝑃𝑃/𝑃𝑃𝑃/𝑛𝑛 queueA

B

C

Figure 3.1: Ph/Ph/n queue with Coxian distributions

Figure 3.1 illustrates an example of Ph/Ph/n queue with Coxian inter-arrival and service
times. In order to model the Pht/Pht/nt queue, we need to keep track of the phase in which
the arriving customer is (area A in Figure 3.1), the number of customers being served in
each phase (area C), and the number of customers in the waiting space (area B). We let
Ui(t) be the number of customers in phase i of the arrival process at time t, Xj(t) be the
number of customers being served in phase j of the service process, and Z(t) be the total
number of customers in the system. Note that the number of customers in the waiting
space is Z(t) −

∑mS

i=1 Xi(t) ≥ 0 and
∑mA

i=1 Ui(t) = 1 for all t > 0. Then, the state of the
system V(t) = (U1(t), . . . , UmA

, X1(t), . . . , XmS
, Z(t))′ is the solution to the following integral
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equations:

Uj(t) =Uj(0) +

mA∑
k 6=j

Y A
kj

(∫ t

0

λkjUk(s)ds

)
−

mA∑
k 6=j

Y A
jk

(∫ t

0

λjkUj(s)ds

)
(3.1)

−
mA∑
k 6=j

mS∑
l=1

Y I
jkl

(∫ t

0

λj0αkβlUj(s)1{Z(s)≤n}ds

)
−

mA∑
k 6=j

Y Q
jk

(∫ t

0

λj0αkUj(s)1{Z(s)>n}ds

)

+

mA∑
k 6=j

mS∑
l=1

Y I
kjl

(∫ t

0

λk0αjβlUk(s)1{Z(s)≤n}ds

)

+

mA∑
k 6=j

Y Q
kj

(∫ t

0

λk0αjUk(s)1{Z(s)>n}ds

)
for 1 ≤ j ≤ mA,

Xi(t) =

mA∑
j=1

mA∑
k=1

Y I
jki

(∫ t

0

λj0αkβiUj(s)1{Z(s)≤n}ds

)
+

mS∑
l 6=i

Y S
li

(∫ t

0

µliXl(s)ds

)
(3.2)

−
mS∑
l 6=i

Y S
il

(∫ t

0

µilXi(s)ds

)
− Y D

i0

(∫ t

0

µi0Xi(s)1{Z(s)≤n}ds

)

−
mS∑
l 6=i

Y D
il

(∫ t

0

µi0Xi(s)1{Z(s)>n}βlds

)

+

mS∑
l 6=i

Y D
li

(∫ t

0

µl0Xl(s)1{Z(s)>n}βids

)
for 1 ≤ i ≤ mS,

Z(t) =

mA∑
j=1

mA∑
k=1

mS∑
l=1

Y I
jkl

(∫ t

0

λj0αkβlUj(s)1{Z(s)≤n}ds

)
(3.3)

+

mA∑
j=1

mA∑
k=1

Y Q
jk

(∫ t

0

λj0αkUj(s)1{Z(s)>n}ds

)
−

mS∑
i=1

Y D
i0

(∫ t

0

µi0Xi(s)1{Z(s)≤n}ds

)

−
mS∑
i=1

mS∑
l=1

Y D
il

(∫ t

0

µi0Xi(s)1{Z(s)>n}βlds

)
.

For notational convenience, the equations (3.1)-(3.3) represent the dynamics of a Ph/Ph/n
queue. As mentioned in Section 2, we can obtain the time-varying extension by replacing
λjk, µil and n with λjk(t), µil(t), and n(t) respectively under mild conditions given in Man-
delbaum et al. [27]. Poisson processes, Y A

kj (·)’s count the number of transitions from phase
k to phase j of the arrival process. When the waiting space is empty (Z(t) ≤ n), Poisson
processes, Y I

jkl(·)’s, count the number of departures from phase j of the arrival process to
phase l of the service process according to the initial distribution β and the arrival process
restarts from phase k according to the initial distribution α. When the waiting space is not
empty (Z(t) > n), Poisson processes, Y Q

jk (·)’s, count the number of departures from phase j
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of the arrival process to the waiting space and a new arrival process begins in phase k. Pois-
son processes, Y S

li (·)’s, count the internal transitions from phase l to phase j of the service
process. When the waiting space is empty, Poisson processes, Y D

i0 (·)’s, count the number of
departures from phase i of the service process. When the waiting space is not empty, Poisson
processes, Y D

il (·)’s, count the number of departures from phase i and a new customer enters
phase l from the waiting space. Note that the Poisson processes explained above have rate
1 (with random time changes) and are mutually independent.

We can easily figure out that the rate functions in equations (3.1)-(3.3) (the integrands
in Poisson processes) are not differentiable with respect to the elements of the state space
vector, V(t). Thus, before applying the uniform acceleration, we conduct a quick check to
find whether the time during which the fluid limit stays at the non-differentiable points has
measure zero or not.

Let v(t) = (ū1(t), . . . , ūmA
(t), x̄1(t), . . . , x̄mS

(t), z̄(t))′ be the fluid limit of V(t). We check
the Poisson process, Y D

il (·) in equation (3.2). The fluid limit for Y D
il (·) is µi0x̄i(t)1{z̄(t)>n}.

When z̄(t) hits n, the non-differentiable point,
∑mS

i=1 x̄(t) = n. However, during the over-
loaded time {t : z̄(t) > n} which can have strictly positive measure in our setting,

∑mS

i=1 x̄(t)
remains unchanged (i.e.,

∑mS

i=1 x̄(t) = n). This implies that the subvector (x̄1(t), . . . , x̄mS
(t))′

moves on the hyperplane during the overloaded period and we cannot obtain the diffusion
limit from the result of Kurtz [23] and Mandelbaum et al. [28]. When we try to apply fluid
and diffusion limits with equations (3.1)-(3.3) just ignoring the issue, we observe a huge
gap between simulation and the numerical solution. For example (Exp. 7 in Section 6),
Figure 3.2 (a) shows the gap between the simulated variance and the variance from the
diffusion limit. We devise an alternative formulation which can significantly improve the
approximation accuracy (see Figure 3.2 (b)).

Time
0 5 10 15 20

V
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nc

e

0

500

1000

1500

2000

2500
diffusion limit
simulation

(a) Variance from the formulation in (3.1)-(3.3)

Time
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V
ar
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nc

e

0

50

100

150

200

250
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simulation

(b) Variance from the alternative formulation

Figure 3.2: Variance estimation of Exp. 7

The issue occurs because
∑mS

i=1 x̄(t) = n during the overloaded period. The alternative
formulation avoids this situation but requires an additional assumption that the phase-
type distribution for service times has a unique initial state. Such distributions include
the Erlang distribution and the Coxian distribution. According to Asmussen et al. [3],
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the Coxian distribution provides almost the same quality of fit as the general phase-type
distribution with the same number of phases. One reason is that the Coxian and generalized
hyperexponential distribution, which are specific classes of phase-type distributions, are also
dense in the class of positive-support distributions, see for example Sasaki et al. [44]. Thus,
the additional assumption of restricting to the Coxian class, therefore, may not be quite
restrictive. Without loss of generality, we assume the unique initial state is phase 1. The
main idea is to maintain the waiting space inside phase 1 and control transition rates from
phase 1 so that the system serves at most n customers. We have the same state space except
for Z(t) because X1(t) accounts for customers in the waiting space. Using this representation,
we can now write our new formulation of the queueing process as follows:

Uj(t) =Uj(0) +

mA∑
k 6=j

Y A
kj

(∫ t

0

λkjUk(s)ds

)
−

mA∑
k 6=j

Y A
jk

(∫ t

0

λjkUj(s)ds

)
(3.4)

−
mA∑
k 6=j

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mA∑
k 6=j

Y I
kj

(∫ t

0

λk0αjUk(s)ds

)
for 1 ≤ j ≤ mA,

X1(t) =

mA∑
j=1

mA∑
k=1

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mS∑
l 6=1

Y S
l1

(∫ t

0

µl1Xl(s)ds

)
(3.5)

−
mS∑
l 6=1

Y S
1l

(∫ t

0

µ1l

[
1{∑mS

r=1Xr(s)≤n}X1(s) + 1{∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)

− Y D
1

(∫ t

0

µ10

[
1{∑mS

r=1Xr(s)≤n}X1(s) + 1{∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)
.

Xi(t) =Y S
1i

(∫ t

0

µ1i

[
1{∑mS

r=1Xr(s)≤n}X1(s) + 1{∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)
(3.6)

+

mS∑
l=2,l 6=i

Y S
li

(∫ t

0

µliXl(s)ds

)
−

mS∑
l 6=i

Y S
il

(∫ t

0

µilXi(s)ds

)
− Y D

i

(∫ t

0

µi0Xi(s)ds

)
for 2 ≤ i ≤ mS.

Poisson processes, Y A
kj (·)’s and Y S

li (·)’s, are the same as those in equations (3.1) and (3.2).
Poisson processes, Y I

jkl(·)’s in equation (3.1) are now replaced by Y I
jk(·)’s because the initial

state of the service process is phase 1, that is, we do not need the index of the starting phase
in the service process. Then, Poisson processes, Y I

jk(·)’s count the number of departures from
phase j that restart from phase k of the arrival process according to the initial distribution
α. Note that we do not have to count the number of departures that restart from the same
phase, i.e. we do not count the case of j = k. Poisson processes, Y D

i (·)’s count departures
from phase i of the service process. Note that the Poisson processes explained above have
rate 1 (with random time changes) and are mutually independent. We can verify that the
issue is not incurred in equations (3.4)-(3.6). In the following section we describe the fluid
and diffusion approximations.
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3.1 Lipschitz Representation

It turns out that we can write our new formulation in terms of Lipschitz rate functions. This
representation will aid us tremendously when proving the fluid and diffusion limit theorems
for the queueing model.

Uj(t) = Uj(0) +

mA∑
k 6=j

Y A
kj

(∫ t

0

λkjUk(s)ds

)
−

mA∑
k 6=j

Y A
jk

(∫ t

0

λjkUj(s)ds

)

−
mA∑
k 6=j

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mA∑
k 6=j

Y I
kj

(∫ t

0

λk0αjUk(s)ds

)
for 1 ≤ j ≤ mA,

X1(t) =

mA∑
j=1

mA∑
k=1

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mS∑
l 6=1

Y S
l1

(∫ t

0

µl1Xl(s)ds

)

−
mS∑
l 6=1

Y S
1l

(∫ t

0

µ1l

[(
X1(s) ∧

(
n−

mS∑
r=2

Xr(s)
)+
)]

ds

)

− Y D
1

(∫ t

0

µ10

[(
X1(s) ∧

(
n−

mS∑
r=2

Xr(s)
)+
)]

ds

)
.

Xi(t) = Y S
1i

(∫ t

0

µ1i

[(
X1(s) ∧

(
n−

mS∑
r=2

Xr(s)
)+
)]

ds

)
+

mS∑
l=2,l 6=i

Y S
li

(∫ t

0

µliXl(s)ds

)

−
mS∑
l 6=i

Y S
il

(∫ t

0

µilXi(s)ds

)
− Y D

i

(∫ t

0

µi0Xi(s)ds

)
for 2 ≤ i ≤ mS.

4 Fluid and diffusion approximations

In this section, we now provide our second main contribution of the paper, fluid and diffusion
limit theorems for the queue length process. However, we first provide some definitions for
notational convenience of the reader that will be used throughout the rest of the paper.

V(t) = (U1(t), . . . , UmA
(t), X1(t), . . . , XmS

(t))′.

v = (u1, . . . , umA
, x1, . . . , xmS

)′.

dAjk : (mA +mS)× 1 vector, jth element is -1, kth element is 1, and other elements are 0.

dIjk : (mA +mS)× 1 vector, jth element is -1, kth element is 1, and other elements are 0.

dSil : (mA +mS)× 1 vector, ith element is -1, lth element is 1, and other elements are 0.

dDi : (mA +mS)× 1 vector, ith element is -1, and other elements are 0.
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fAjk(t,v) : rate function (integrand) in Y A
jk(·).

f Ijk(t,v) : rate function (integrand) in Y I
jk(·).

fSil (t,v) : rate function (integrand) in Y S
il (·).

fDi (t,v) : rate function (integrand) in Y D
i (·).

WA
jk(t),W

I
jk(t),W

S
il (t),W

D
i (t) : mutually independent standard Brownian motions.

F(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjkf
A
jk(t,v) +

mA∑
j=1

mA∑
k=1

dIjkf
I
jk(t,v) +

mS∑
i=1

mS∑
l=1,l 6=i

dSilf
S
il (t,v) +

mS∑
i=1

dDi f
D
i (t,v).

dH(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjk

√
fAjk(t,v)dWA

jk(t) +

mA∑
j=1

mA∑
k=1

dIjk

√
f Ijk(t,v)dW I

jk(t)

+

mS∑
i=1

mS∑
l=1,l 6=i

dSil

√
fSil (t,v)dW S

il (t) +

mS∑
i=1

dDi

√
fDi (t,v)dWD

i (t).

G(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjkd
A
jk

′
fAjk(t,v) +

mA∑
j=1

mA∑
k=1

dIjkd
I
jk

′
f Ijk(t,v) +

mS∑
i=1

mS∑
l=1,l 6=i

dSild
S
il

′
fSil (t,v)

+

mS∑
i=1

dDi dDi
′
fDi (t,v).

With the definitions above, we rewrite equations (3.4)-(3.6) in a vector form as follows:

V(t) =V(0) +

mA∑
j=1

mA∑
k=1,k 6=j

dAjkY
A
jk

(∫ t

0

fAjk(s,V(s))ds

)
+

mA∑
j=1

mA∑
k=1

dIjkY
I
jk

(∫ t

0

f Ijk(s,V(s))ds

)

+

mS∑
i=1

mS∑
l=1,l 6=i

dSilY
S
il

(∫ t

0

fSil (s,V(s))ds

)
+

mS∑
i=1

dDi Y
D
i

(∫ t

0

fDi (s,V(s))ds

)
.

Following the procedure of the uniform acceleration in Mandelbaum et al. [27] and Kurtz
[23], we define a sequence of processes {Vη(t), η ≥ 1, t ≥ 0}, where

Vη(t) =Vη(0) +

mA∑
j=1

mA∑
k=1,k 6=j

dAjkY
A
jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)

+

mA∑
j=1

mA∑
k=1

dIjkY
I
jk

(
η

∫ t

0

f Ijk(s, V̄
η(s))ds

)
+

mS∑
i=1

mS∑
l 6=i

dSilY
S
il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)

+

mS∑
i=1

dDi Y
D
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)
.
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4.1 Fluid Limit Theorem

Then, we have the following proposition for the fluid limit:

Theorem 4.1. Suppose vη(0)→ v(0) as η →∞, then

lim
η→∞

Vη(t)

η
= v(t) almost surely,

where v(t) is the solution to the following system of ordinary differential equations:

d

dt
v(t) =

mA∑
j=1

mA∑
k 6=j

dAjkf
A
jk(t,v(t)) +

mA∑
j=1

mA∑
k 6=j

dIjkf
I
jk(t,v(t)) (4.1)

+

mS∑
i=1

mS∑
l 6=i

dSilf
S
il (t,v(t)) +

mS∑
i=1

dDi f
D
i (t,v(t)).

Proof. See Appendix.

4.2 Diffusion Limit Theorem

Now that we have the fluid limit, v(t), we can derive the diffusion limit as follows:

Theorem 4.2. Let Dη(t) =
√
η(Vη(t)/η − v(t)), then we have that

lim
η→∞

Dη(t) = D(t) in distribution,

where D(t) is the solution to the following stochastic differential equation

dD(t) = dH(t,v(t)) + ∂F(t,v(t))D(t)dt,

and ∂F(t,v) is the gradient matrix of F(t,v) with respect to v. If D(0) is a constant or
normally distributed, then {D(t), t ≥ 0} is a Gaussian process (Arnold [2]).

Proof. See Appendix.

Now that we have fluid and diffusion limits for the queue length process, we can therefore,
for a large η, give an approximation for the original model as

Vη(t) ≈ ηv(t) +
√
ηD(t).

One should note that by increasing η also implies that we are effectively increasing the
number of servers along with other parameters (Mandelbaum et al. [28]). Therefore, if the
number of servers is sufficiently large in the original setting (i.e., η = 1), we can approximate
V(t) as follows:

V(t) ≈ v(t) + D(t).

Since {D(t), t ≥ 0} is a Gaussian process, {V(t), t ≥ 0} is approximately a Gaussian process.
If we have the mean vector and the covariance matrix of D(t), we can approximately identify
the queue length distributions as follows:
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Proposition 4.3 (Mean and covariance matrix of D(t), Arnold [2]). Let M(t) = E[D(t)]
and Σ(t) = Cov[D(t),D(t)]. Then, M(t) and Σ(t) are the unique solution to the following
ordinary equations:

d

dt
M(t) = ∂F(t,v(t))M(t), (4.2)

d

dt
Σ(t) = ∂F(t,v(t))Σ(t) + Σ(t)∂F(t,v(t))′ + G(t,v(t)). (4.3)

If M(0) = 0, M(t) = 0 for all t ≥ 0.

Recall that we start with an empty queue, which implies that we do not have to solve
equation (4.2), i.e., M(t) = 0 for all t ≥ 0.

By solving differential equations (4.1) and (4.3), we can approximate E[V(t)] and Cov[V(t),V(t)]
as follows:

E[V(t)] ≈ v(t),

Cov[V(t),V(t)] ≈ Σ(t).

Let X(t) be the number of customers in the system at time t. Then,

X(t) =

mS∑
i=1

Xi(t).

Note that {X(t), t ≥ 0} is a Gaussian process and we can obtain the mean and variance of
X(t) as follows:

E[X(t)] =

mS∑
i=1

E[Xi(t)],

Var[X(t)] =

mS∑
i=1

Var[Xi(t)] + 2

mS−1∑
i=1

mS∑
l=i+1

Cov[Xi(t), Xl(t)].

4.3 Probability of Delay

Now armed with our fluid and diffusion approximations, we can also approximate other
performance measures other than the mean and variance of the queue length process. One
of the most important performance measures is the probability of delay or the probability
that a customer must wait for service when they arrive to the queue i.e.

P(Delay) = P(W (t) > 0) (4.4)

where W (t) is the waiting time of a customer that joins the queue at time t. Thus, given
our fluid and diffusion approximations for the mean and variance of the queue length we can
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derive a Gaussian approximation for the probability of delay as

P(Delay) = P(W (t) > 0) (4.5)

≈ P(V(t) ≥ n(t)) (4.6)

≈ P

(
Z̃ ≥ n(t)− v(t)√

Σ(t)

)
(4.7)

≈ Φ

(
n(t)− v(t)√

Σ(t)

)
(4.8)

where Z̃ is a standard Gaussian random variable, v(t) is the fluid limit mean, and
√

Σ(t) is
the standard deviation of the diffusion limit.

5 The Infinite Server Case

In this section, we demonstrate that we can also apply our fluid and diffusion limits in the
infinite server setting as well. This provides first and second order approximations for the
queue length process that was first studied by Nelson and Taaffe [32]. However, we rigorously
justify our approximations by limit theorems.

5.1 Infinite Server Representation

In the infinite server setting we have the following representation for the queue length process,

Uj(t) = Uj(0) +

mA∑
k 6=j

Y A
kj

(∫ t

0

λkjUk(s)ds

)
−

mA∑
k 6=j

Y A
jk

(∫ t

0

λjkUj(s)ds

)

−
mA∑
k 6=j

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mA∑
k 6=j

Y I
kj

(∫ t

0

λk0αjUk(s)ds

)
for 1 ≤ j ≤ mA,

X1(t) =

mA∑
j=1

mA∑
k=1

Y I
jk

(∫ t

0

λj0αkUj(s)ds

)
+

mS∑
l 6=1

Y S
l1

(∫ t

0

µl1Xl(s)ds

)

−
mS∑
l 6=1

Y S
1l

(∫ t

0

µ1l

[
(X1(s))

]
ds

)
− Y D

1

(∫ t

0

µ10

[
(X1(s))

]
ds

)
,

Xi(t) = Y S
1i

(∫ t

0

µ1i

[
(X1(s))

]
ds

)
+

mS∑
l=2,l 6=i

Y S
li

(∫ t

0

µliXl(s)ds

)

−
mS∑
l 6=i

Y S
il

(∫ t

0

µilXi(s)ds

)
− Y D

i

(∫ t

0

µi0Xi(s)ds

)
for 2 ≤ i ≤ mS.

The major difference between the finite and infinite server settings is the rate functions for
the Xi Poisson processes. In the finite setting, at most nt customers can be processed at any
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time t, however, in the infinite server setting, this is no longer a limitation. Thus, all of the

rate functions with the terms X1 ∧
(
n−

∑mS

r=2Xr(s)
)+

since the term
(
n−

∑mS

r=2Xr(s)
)+

is equal to ∞.

5.2 Infinite Server Fluid Limit Theorem

We have the following proposition for the fluid limit for the Pht/Pht/∞ queue

Proposition 5.1. Suppose vη,∞(0)→ v∞(0) as η →∞, then

lim
η→∞

Vη,∞(t)

η
= v∞(t) almost surely,

where v∞(t) is the solution to the following system of ordinary differential equations:

d

dt
v∞(t) =

mA∑
j=1

mA∑
k 6=j

dAjkf
A
jk(t,v

∞(t)) +

mA∑
j=1

mA∑
k 6=j

dIjkf
I
jk(t,v

∞(t))

+

mS∑
i=1

mS∑
l 6=i

dSilf
S
il (t,v

∞(t)) +

mS∑
i=1

dDi f
D
i (t,v∞(t))

where the rate functions correspond to the infinite server representation given in Section 5.1.

Proof. The proof of this result immediately follows from the proof of the finite case and
setting n =∞.

5.3 Infinite Server Diffusion Limit Theorem

Now that we have the fluid limit, v∞(t), we can derive the diffusion limit as follows:

Proposition 5.2. Let Dη,∞(t) =
√
η(Vη,∞(t)/η − v∞(t)), then we have that

lim
η→∞

Dη,∞(t) = D∞(t) in distribution,

where D∞(t) is the solution to the following stochastic differential equation

dD∞(t) = H(t,v∞(t)) + ∂F(t,v∞(t))D∞(t)dt,

and ∂F(t,v∞(t)) is the gradient matrix of F(t,v∞(t)) with respect to v∞(t) where the rate
functions correspond to the infinite server representation given in Section 5.1.

Proof. The proof of this result immediately follows from the proof of the finite case and
setting n =∞.
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Figure 6.1: Overall flow of the numerical study

6 Numerical results

In this section, we provide some numerical results comparing the proposed method with the
simulation results. Referring to the flow chart in Figure 6.1, we choose Coxian distributions to
approximate Weibull and lognormal distributions for inter-arrival and service times. Coxian
distributions have a unique initial state that the proposed method requires and the overall
fitting quality is known to be good (Asmussen et al. [3]). We use the EM algorithm developed
by Asmussen et al. [3], although other phase-type distributions and fitting algorithms can
also be used. Since we want to approximate the distribution itself, we use 8-10 phases to fit
the target distributions accurately. Figure 6.2 illustrates a density and distribution fitting
with a Coxian distribution. In this example, we use 10 phases to approximate the Weibull
distribution. We derive the ordinary differential equations (ODEs) from equations (4.1) and
(4.3), and solve them using MATLAB. We write the simulation code in C++. In order to
generate a general time-varying arrival process, we implement the algorithm based on the
standard equilibrium renewal process (SERP) explained in the longer version of Liu and
Whitt [24]. We use Weibull distributions with mean 1 as a base distribution in order to
generate time-varying arrival times. We run 5,000 independent instances for each setting
and estimate the mean and the variance of the number of customers in the system and the
probability of delay over time.

We choose two Weibull distributions having the same mean 1 for the arrival processes:
the squared coefficient of variation (SCoV) of Weibull(0.79,0.7) is 2.1387 which is greater
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than one, and the SCoV of Weibull(1.1271,2.5) is 0.1831 which is less than one. Time-varying
rates are applied to the base distributions for constructing the actual arrival processes. We
do not consider the case when the SCoV is 1 since it is an exponential distribution and has
been studied extensively in the literature. For the service times, we choose two lognormal
distributions with the different SCoV values. Without loss of generality, the means of two
service time distributions are 1. Increasing the number of servers makes us expect more
accurate estimations since the fluid and diffusion limits are asymptotically exact. Therefore,
we compare the cases when the number of servers is 50 and 200. The corresponding time-
varying rates to the number of servers are 45 + 30 sin(2πt/10) and 180 + 120 sin(2πt/10)
respectively. Then, we have 8 combinations of experiments: two distributions for arrivals,
two distributions for services, two values of the number of servers:

Exp. 1: 50 servers, SCoV of inter-arrival times > 1 and SCoV of service times > 1

– Time-varying rate: 45 + 30 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(0.79, 0.7), SCoV = 2.1387

– Service time distribution: Lognormal(−0.5, 1), SCoV = 1.7183

Exp. 2: 200 servers, SCoV of inter-arrival times > 1 and SCoV of service times > 1

– Time-varying rate: 180 + 120 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(0.79, 0.7), SCoV = 2.1387

– Service time distribution: Lognormal(−0.5, 1), SCoV = 1.7183

Exp. 3: 50 servers, SCoV of inter-arrival times > 1 and SCoV of service times < 1

– Time-varying rate: 45 + 30 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(0.79, 0.7), SCoV = 2.1387

– Service time distribution: Lognormal(−0.2027, 0.6368), SCoV = 0.5

Exp.4: 200 servers, SCoV of inter-arrival times > 1 and SCoV of service times < 1

– Time-varying rate: 180 + 120 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(0.79, 0.7), SCoV = 2.1387

– Service time distribution: Lognormal(−0.2027, 0.6368), SCoV = 0.5

Exp. 5: 50 servers, SCoV of inter-arrival times < 1 and SCoV of service times > 1

– Time-varying rate: 45 + 30 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(1.1271, 2.5), SCoV = 0.1831

– Service time distribution: Lognormal(−0.5, 1), SCoV = 1.7183

Exp. 6: 200 servers, SCoV of inter-arrival times > 1 and SCoV of service times > 1

– Time-varying rate: 180 + 120 sin(2πt/10)
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– Base inter-arrival time distribution: Weibull(1.1271, 2.5), SCoV = 0.1831

– Service time distribution: Lognormal(−0.5, 1), SCoV = 1.7183

Exp. 7: 50 servers, SCoV of inter-arrival times < 1 and SCoV of service times < 1

– Time-varying rate: 45 + 30 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(1.1271, 2.5), SCoV = 0.1831

– Service time distribution: Lognormal(−0.2027, 0.6368), SCoV = 0.5

Exp. 8: 200 servers, SCoV of inter-arrival times > 1 and SCoV of service times > 1

– Time-varying rate: 180 + 120 sin(2πt/10)

– Base inter-arrival time distribution: Weibull(1.1271, 2.5), SCoV = 0.1831

– Service time distribution: Lognormal(−0.2027, 0.6368), SCoV = 0.5

Time
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1 Weibull
Coxian

(a) Density function fitting

Time
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1
Weibull
Coxian

(b) Distribution function fitting

Figure 6.2: Weibull(1.1271, 2.5) and corresponding Coxian distributions.

We mention that the queue length distributions are approximately Gaussian in Section 4.
Figure 6.3 compares the empirical density and the density from the diffusion limit at several
time points (underloaded times 5 and 10, critically loaded times 7.5 and 17.5 and overloaded
times 5 and 15). Although we observe some skewness in the empirical density, the Gaussian
approximation seems to work well.

Figures 6.4-6.7 plot the mean and the variance of the number of customers and the prob-
ability of delay over time comparing the proposed method and the simulation results for the
cases of 50 and 200 servers. Each figure represents a different combination of distributions
for arrival processes and service times. Overall we observe that the proposed method pro-
vides accurate estimations of the mean and the variance of the number of customers and
the probability of delay. Comparing Figures 6.4 (a) and (b), we observe that increasing
the number of servers results in more accurate estimations of the mean as expected. We
observe the same result for the variance (Figures 6.4 (c) and (d)) and the probability of
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(b) Density at t = 7.5
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(c) Density at t = 10
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(d) Density at t = 15
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(e) Density at t = 17.5
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(f) Density at t = 20

Figure 6.3: Density of the number of customers at time 5, 7.5, 10, 15, 17.5 and 20.
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Figure 6.4: Comparison between Exp. 1 and Exp. 2
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Figure 6.5: Comparison between Exp. 3 and Exp. 4
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Figure 6.6: Comparison between Exp. 5 and Exp. 6
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Figure 6.7: Comparison between Exp. 7 and Exp. 8
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delay (Figures 6.4 (e) and (f)). The same results hold across different distribution settings
(Figures 6.5-6.7). The distributions in Figure 6.4 have the largest SCoV values and those
in Figure 6.7 have the smallest SCoV values. In Figures 6.4 and 6.7, we observe that the
proposed method works better when the SCoV values are small.

7 Conclusion

This paper describes a new methodology to approximate the queue length distributions
of large-scale Gt/Gt/nt queues. Instead of analyzing a Gt/Gt/nt directly, we study a
Pht/Pht/nt queue since phase-type distributions can approximate positive-valued distribu-
tions in any level of accuracy. Applying the uniform acceleration and strong approximations
to Pht/Pht/nt queues to obtain fluid and diffusion limits, we encounter the lingering problem
in our formulation and cannot obtain the diffusion limit. To resolve the issue, we propose a
new formulation with an additional condition that is not quite restrictive. The new formu-
lation works well and we successfully derive the fluid and diffusion limits. We find that the
queue length process is approximately a Gaussian process and we derive ordinary differential
equations to obtain the mean and variance of the queue length over time.

From the numerical study, we observe that the proposed method works better when
the distributions for arrival processes and service times have smaller SCoVs. Since the
uniform acceleration method increases the number of servers to infinity, the estimations
should become more accurate as the number of servers increases. We exactly observe this
phenomenon as expected.

We suggest two directions for future research. For example, in order to obtain the diffu-
sion limit, we put an additional condition (a unique initial state for phase-type distributions).
Although it does not seem to be critical, the method will be improved if the restriction can
be removed. Extending the proposed method to multi-dimensional queueing networks is
another possible research direction that we plan to pursue in a follow-up paper.
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A Appendix

Our convergence results will be based on the following strong approximation result which
allows for a pathwise approximation of a Poisson process by a standard Brownian motion
and linear drift that lives on the same probability space. Before we prove the main result,
we need the following lemma.

Lemma A.1 (Kurtz 1978). A standard Poisson process {Π(t)}t≥0 can be realized on the
same probability space as a standard Brownian motion {W (t)}t≥0 in such a way that the
almost surely finite random variable

Z ≡ sup
t≥0

|Π(t)− t−W (t)|
log(2 ∨ t)

as finite moment generating function in the neighborhood of the origin and in particular finite
mean.

Lemma A.2 (Mandelbaum et al. 1998). Let x, y, and z be measurable, non-negative func-
tions on the reals. If y is bounded and z is integrable on [0, T ] and for all 0 ≤ t ≤ T ,

x(t) ≤ z(t) +

∫ t

0

x(s)y(s)ds, (A.1)

then

x(t) ≤ z(t) +

∫ t

0

z(s)y(s) · exp

(∫ t

s

y(r)dr

)
ds (A.2)

and

sup
0≤t≤T

x(t) ≤ sup
0≤t≤T

z(t) · exp

(∫ T

0

y(t)dt

)
. (A.3)

A.1 Proof of Fluid Limit

Suppose vη(0)→ v(0) as η →∞, then

lim
η→∞

Vη(t)

η
= v(t) almost surely,

where v(t) is the solution to the following system of ordinary differential equations:

d

dt
v(t) =

mA∑
j=1

mA∑
k 6=j

dAjkf
A
jk(t,v(t)) +

mA∑
j=1

mA∑
k 6=j

dIjkf
I
jk(t,v(t))

+

mS∑
i=1

mS∑
l 6=i

dSilf
S
il (t,v(t)) +

mS∑
i=1

dDi f
D
i (t,v(t)).

Proof. In view of the strong approximation results given in Lemma A.1 and because the rate
functions of the queueing process are Lipschitz continuous,
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mA∑
j=1

mA∑
k 6=j

dAjk

∣∣∣∣Y A
jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)
− η

∫ t

0

fAjk(s, V̄
η(s))ds−WA

jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

dIjk

∣∣∣∣Y A
jk

(
η

∫ t

0

f Ijk(s, V̄
η(s))ds

)
− η

∫ t

0

f Ijk(s, V̄
η(s))ds−W I

jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

dSil

∣∣∣∣Y S
il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)
− η

∫ t

0

fSil (s, V̄
η(s))ds−W S

il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

dDi

∣∣∣∣Y D
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)
− η

∫ t

0

fDi (s, V̄η(s))ds−WD
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)∣∣∣∣
is Θ (log(η)) almost surely. Moreover, the W (η·) terms are standard Brownian motions.
Since the rate functions are Lipschitz continuous and scalable in the sense of Mandelbaum
et al. [27], we know that know that the law of the iterated logarithm for Brownian motion
yields,

lim
η→∞

sup
t≤T

1

η
WA
jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
W I
jk

(
η

∫ t

0

f Ijk(s, V̄
η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
W S
il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
WD
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)
= 0 almost surely.

This implies that

mA∑
j=1

mA∑
k 6=j

dAjk
1

η

∣∣∣∣WA
jk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)∣∣∣∣+

mA∑
j=1

mA∑
k=1

dIjk
1

η

∣∣∣∣W I
jk

(
η

∫ t

0

f Ijk(s, V̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

dSil
1

η

∣∣∣∣W S
il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)∣∣∣∣+

mS∑
i=1

dDi
1

η

∣∣∣∣WD
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)∣∣∣∣
converges to zero uniformly over compact sets of time as η goes to ∞. Thus, for some
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constant C̃, we have that∣∣∣∣1ηVη(t)− v(t)

∣∣∣∣
≤

mA∑
j=1

mA∑
k 6=j

dAjk

∫ t

0

∣∣fAjk(s, V̄η(s))− fAjk(s,v(s))
∣∣ ds+

mA∑
j=1

mA∑
k=1,k 6=j

dAjk
1

η

∣∣∣∣Wjk

(
η

∫ t

0

fAjk(s, V̄
η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

dIjk

∫ t

0

∣∣f Ijk(s, V̄η(s))− f Ijk(s,v(s))
∣∣ ds+

mA∑
j=1

mA∑
k=1

dIjk
1

η

∣∣∣∣W I
jk

(
η

∫ t

0

f Ijk(s, V̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

dSil

∫ t

0

∣∣fSil (s, V̄η(s))− fSil (s,v(s))
∣∣ ds+

mS∑
i=1

mS∑
l 6=i

dSil
1

η

∣∣∣∣W S
il

(
η

∫ t

0

fSil (s, V̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

dDi

∫ t

0

∣∣fDi (s, V̄η(s))− fDi (s,v(s))
∣∣ ds+

mS∑
i=1

dDi
1

η

∣∣∣∣WD
i

(
η

∫ t

0

fDi (s, V̄η(s))ds

)∣∣∣∣
+ C̃ ·

(
log(η)

η

)
.

Thus, if we fix ε > 0, we have that from Lemma A.1 and the law of the iterated logarithm
for Brownian motion that there exists an η∗ ∈ N such that for all η ≤ η∗ and uniformly on
compact sets of time, for t ≤ T we have that

∣∣∣∣1ηVη(t)− v(t)

∣∣∣∣ ≤ mA∑
j=1

mA∑
k=1,k 6=j

dAjk

∫ t

0

∣∣fAjk(s, V̄η(s))− fAjk(s,v(s))
∣∣ ds

+

mA∑
j=1

mA∑
k=1

dIjk

∫ t

0

∣∣f Ijk(s, V̄η(s))− f Ijk(s,v(s))
∣∣ ds

+

mS∑
i=1

mS∑
l 6=i

dSil

∫ t

0

∣∣fSil (s, V̄η(s))− fSil (s,v(s))
∣∣ ds

+

mS∑
i=1

dDi

∫ t

0

∣∣fDi (s, V̄η(s))− fDi (s,v(s))
∣∣ ds+ ε

≤
∣∣F(t, V̄η(t))− F(t,v(t))

∣∣+ ε.

Now that we have the rate functions are Lipschitz continuous functions, we know that
there exists a constant M such that

sup
0≤t≤T

∣∣∣∣1ηVη(t)− v(t)

∣∣∣∣ ≤ M

∫ t

0

sup
0≤r≤s

∣∣∣∣1ηVη(r)− v(r)

∣∣∣∣ ds+ ε.

Now by applying Gronwall’s lemma, we have that

sup
0≤t≤T

∣∣∣∣1ηVη(t)− v(t)

∣∣∣∣ ≤ εeMT

which implies our fluid limit result since ε was arbitrarily chosen.
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A.2 Proof of Diffusion Limit

Let Dη(t) =
√
η(Vη(t)/η − v(t)), then we have that

lim
η→∞

Dη(t) = D(t) in distribution,

where D(t) is the solution to the following stochastic differential equation

dD(t) = H(t,v(t)) + ∂F(t,v(t))D(t)dt, (A.4)

Via the theory of strong approximations given in Lemma A.1, we can now represent Dη(t)
by the following equality

Dη(t) =
√
η

(
1

η
Vη(t)− v(t)

)
=
√
η ·
(
F(t, V̄η(t))− F(t,v)

)
+ Zη(t) + Θ

(
log(η)
√
η

)
=

mA∑
j=1

mA∑
k 6=j

dAjk

∫ t

0

√
η
(
fAjk(s, V̄

η(s))− fAjk(s,v(s))
)
ds

+

mA∑
j=1

mA∑
k=1

dIjk

∫ t

0

√
η
(
f Ijk(s, V̄

η(s))− f Ijk(s,v(s))
)
ds

+

mS∑
i=1

mS∑
l 6=i

dSil

∫ t

0

√
η
(
fSil (s, V̄

η(s))− fSil (s,v(s))
)
ds

+

mS∑
i=1

dDi

∫ t

0

√
η
(
fDi (s, V̄η(s))− fDi (s,v(s))

)
ds+ Zη(t) + Θ

(
log(η)
√
η

)
.

where

Zη(t) =

mA∑
j=1

mA∑
k 6=j

dAjkB
A
jk

(∫ t

0

fAjk(s, V̄
η(s))ds

)
+

mA∑
j=1

mA∑
k=1

dIjkB
I
jk

(∫ t

0

f Ijk(s, V̄
η(s))ds

)

+

mS∑
i=1

mS∑
l 6=i

dSilB
S
il

(∫ t

0

fSil (s, V̄
η(s))ds

)
+

mS∑
i=1

dDi B
D
i

(∫ t

0

fDi (s, V̄η(s))ds

)
.

Lemma A.3. The sequence of stochastic processes Zη(t) converges in distribution to the
process Z(t) where

Z(t) =

mA∑
j=1

mA∑
k 6=j

dAjkB
A
jk

(∫ t

0

fAjk(s,v(s))ds

)
+

mA∑
j=1

mA∑
k=1

dIjkB
I
jk

(∫ t

0

f Ijk(s,v(s))ds

)
(A.5)

+

mS∑
i=1

mS∑
l 6=i

dSilB
S
il

(∫ t

0

fSil (s,v(s))ds

)
+

mS∑
i=1

dDi B
D
i

(∫ t

0

fDi (s,v(s))ds

)
.
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Proof. For this proof, we will use the Holder continuity of Brownian motion. We know that
for any α ∈ (0, 1/2) and T > 0, there exists an integrable and hence almost surely finite
random variable M such that

|B (t2)−B (t1)| ≤ M |t2 − t1|α

almost surely for all t1, t2 ≤ T . Therefore, using the fluid limit and the Lipschitz continuity
of the rate functions along with the Holder continuity of the Brownian motion, we have that
Zη(t) converges in distribution to the process Z(t).

The following lemma shows that the sequence Dη(t) is bounded in probability.

Lemma A.4. For an ε > 0, there exists η∗ ∈ N and K <∞ such that

P
(

sup
0≤t≤T

|Dη(t)| > K

)
< ε for all η ≥ η∗. (A.6)

Proof. The strong approximation for the Brownian motion yields the following representation

Dη(t) =
√
η

(
1

η
Vη(t)− v(t)

)
+ Zη(t) + C̃ · log η

√
η

=

mA∑
j=1

mA∑
k=1,k 6=j

dAjk

∫ t

0

√
η
(
fAjk(s, V̄

η(s))− fAjk(s,v(s))
)
ds

+

mA∑
j=1

mA∑
k=1

dIjk

∫ t

0

√
η
(
f Ijk(s, V̄

η(s))− f Ijk(s,v(s))
)
ds

+

mS∑
i=1

mS∑
l 6=i

dSil

∫ t

0

√
η
(
fSil (s, V̄

η(s))− fSil (s,v(s))
)
ds

+

mS∑
i=1

dDi

∫ t

0

√
η
(
fDi (s, V̄η(s))− fDi (s,v(s))

)
ds+ Zη(t) + C̃ · log η

√
η
.

We know that Zη(t) is tight by Lemma A.3 and hence is bounded in probability. Moreover,
by using the Lipschitz continuity of the rate functions we have that

sup
0≤t≤T

Dη(t) ≤ M

∫ T

0

sup
0≤t≤s

Dη(s)ds+ sup
0≤t≤T

Zη(t) + ε

for some Lipschitz constant M. Thus, by Gronwall’s inequality we have almost surely that

sup
0≤t≤T

Dη(t) ≤ eMT sup
0≤t≤T

(Zη(t) + ε)

and this concludes the proof.

Lemma A.5. If f η = {f ηt }t≥0 be a sequence of non-negative random processes such that

lim
η→∞

∫ T

0

f η(u)du = 0 in probability, (A.7)

then, for all δ > 0,

lim
η→∞

P
(

sup
0≤t≤T

∣∣∣∣∫ T

0

f η(u)Dη(u)du

∣∣∣∣ > δ

)
= 0. (A.8)
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Proof. If we fix ε > 0, then we know that there exists a constant η∗ ∈ N such that for all all
η > η∗, there exists sets Ωη,1 and Ωη,2 such that∫ T

0

f η(u)du < ε/2 on Ωη,1 and such that P(Ωη,1) ≥ 1− ε/2, (A.9)

and
sup

0≤t≤T
|Dη(t)| < K on Ωη,2 and such that P(Ωη,2) ≥ 1− ε/2, (A.10)

Therefore, we have that

sup
0≤t≤T

∣∣∣∣∫ T

0

f η(u)Dη(u)du

∣∣∣∣ ≤ sup
0≤t≤T

|Dη(t)|
∫ T

0

f η(u) < Kε on Ωη,1 ∩ Ωη,2. (A.11)

This concludes the proof of the lemma.

Theorem A.6 (Proof of Diffusion Limit). Let us first defined a sequence of stochastic pro-
cesses

D̃η(t) ≡
∫ t

0

∂F(s,v(s))D̃η(s)ds+ Zη(t). (A.12)

By the continuous mapping theorem and Lemma A.3, which shows that Zη(t) converges to
Z(t) in Equation A.5, then we know that that D̃η(t) converges to D̃(t) given in Equation
A.4. It now suffices to show that

lim
η→∞

sup
0≤t≤T

|Dη(t)− D̃η(t)| = 0 in probability. (A.13)

To prove this, we will let
Eη(t) ≡ Dη(t)− D̃η(t).

Therefore, from the definition of D̃η(t) and the representation of Dη(t) we obtain the follow-
ing equality for Eη(t)

Eη(t) =

mA∑
j=1

mA∑
k 6=j

dAjk

∫ t

0

√
η
(
fAjk(u, V̄

η(u))− fAjk(s,v(u))
)
du

+

mA∑
j=1

mA∑
k=1

dIjk

∫ t

0

√
η
(
f Ijk(s, V̄

η(s))− f Ijk(s,v(t))
)
ds

+

mS∑
i=1

mS∑
l 6=i

dSil

∫ t

0

√
η
(
fSil (s, V̄

η(s))− fSil (s,v(t))
)
ds

+

mS∑
i=1

dDi

∫ t

0

√
η
(
fDi (s, V̄η(s))− fDi (s,v(t))

)
ds−

∫ t

0

∂F(u,v(u))Dη(u)

=

∫ t

0

∂F(u,v(u))Eη(u) +
√
η

∫ t

0

(
F(u, V̄η(u))− F(u,v(u))

)
du

−
∫ t

0

∂F(u,v(u))Dη(u)
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By the mean value theorem, there exist vectors ζη(u) that is in between v(u) and V̄η(u))
such that

F(u, ζη(u))− F(u,v(u)) =
1
√
η
∂F(u, ζη(u))Dη(u)

This implies that

Eη(t) =

∫ t

0

(∂F(u, ζη(u))− ∂F(u,v(u))) Dη(u) +

∫ t

0

∂F(u,v(u))Eη(u)du. (A.14)

We also know that

lim
η→∞

sup
0≤t≤T

‖∂F(u, ζη(u))− ∂F(u,v(u))‖ = 0 a.s (A.15)

in lieu of the fluid limit convergence. Moreover, since Dη(u) is bounded in probability and
Lemma A.5 is true, we have that the process

lim
η→∞

sup
0≤t≤T

∫ t

0

(∂F(u, ζη(u))− ∂F(u,v(u))) Dη(u) = 0 in probability.

Applying Gronwall’s lemma and using Lemma A.5, we finally obtain our diffusion limit
result.

A.3 Additional Numerical Examples

In this section, we provide some numerical examples where our proposed approach may not
work well and discuss what causes this problem. We conduct 3 experiments sharing the same
base inter-arrival time distribution, Weibull(2.1271, 2.5), SCoV = 0.1831, and service time
distribution, Lognormal(−0.2027, 0.6368), SCoV = 0.5 with time-varying arrival rates and
number of servers:

Exp. A1: d110 + 20 sin(2πt/10)e servers, 100 + 20 sin(2πt/10) arrival rate

Exp. A2: d220 + 40 sin(2πt/10)e servers, 200 + 40 sin(2πt/10) arrival rate

Exp. A3: d880 + 160 sin(2πt/10)e servers, 800 + 160 sin(2πt/10) arrival rate

Figure A.1 (a) shows a large discrepancy between simulated variance and the variance
from the diffusion limit on the time interval (3, 7). It is because of the well-known lingering
effect mentioned in Mandelbaum et al. [28] and addressed by Ko and Gautam [22]. Lingering
occurs when the queue is critically loaded, i.e., the fluid limit stays close to the number of
servers. We also observe that the discrepancy decreases as we increases the number of servers
(the acceleration parameter). In order to reduce the discrepancy for the queues with a small
number of servers, we might need to do some adjustments just as Ko and Gautam [22]
did. However, the application of such an adjustment is not straightforward under multi-
dimensional settings. We leave the issue for future research.
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Figure A.1: Lingering effect when critically loaded
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