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PAPER

Virtualizing Graphics Architecture of Android Mobile Platforms in
KVM/ARM Environment

Sejin PARK†a), Byungsu PARK†b), Unsung LEE†c), Nonmembers, and Chanik PARK†d), Member

SUMMARY With the availability of virtualization extension in mobile
processors, e.g. ARM Cortex A-15, multiple virtual execution domains are
efficiently supported in a mobile platform. Each execution domain requires
high-performance graphics services for full-featured user interfaces such
as smooth scrolling, background image blurring, and 3D images. However,
graphics service is hard to be virtualized because multiple service com-
ponents (e.g. ION and Fence) are involved. Moreover, the complexity of
Graphical Processing Unit (GPU) device driver also makes harder virtual-
izing graphics service. In this paper, we propose a technique to virtualize
the graphics architecture of Android mobile platform in KVM/ARM en-
vironment. The Android graphics architecture relies on underlying Linux
kernel services such as the frame buffer memory allocator ION, the buffer
synchronization service Fence, GPU device driver, and the display synchro-
nization service VSync. These kernel services are provided as device files
in Linux kernel. Our approach is to para-virtualize these device files based
on a split device driver model. A major challenge is to translate guest-view
of information into host-view of information, e.g. memory address trans-
lation, file descriptor management, and GPU Memory Management Unit
(MMU) manipulation. The experimental results show that the proposed
graphics virtualization technique achieved almost 84%-100% performance
of native applications.
key words: GPU virtualization, mobile virtualization, KVM, para-
virtualization

1. Introduction

Traditionally, virtualization technique was server-side tech-
nology to maximize resource utilization but this technology
has been begun to be applied to mobile environments, e.g.,
Xen on ARM [1] and KVM/ARM [2]. Mobile virtualization
is getting attention in various areas such as enterprise envi-
ronment, financial apps, private environment and so on. In
case of enterprise environment, Gartner predicts half of em-
ployers will require employees to supply their own device
for work purposes by 2017 [3]. This “bring your own de-
vice (BYOD)” environment faces various challenges. For
instance, a compromised app can be installed in a user’s
mobile device. If a user accesses corporate data using the
device, the data can be leaked or crashed by the compro-
mised app. In case of financial app or mobile wallet, they
cannot work normally without security concern [4]. Mo-
bile virtualization technologies such as [1], [2] effectively
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handle these critical issues owing to their isolation function-
ality. There are further cases for mobile virtualization. A
user may want to have his or her own multiple environ-
ments for various purposes. In this case, mobile virtual-
ization technique is also the most powerful solution. How-
ever, there is a significant problem in current mobile virtu-
alization technique: high-performance graphics support. In
contrast to server environment that uses text-based terminal
or low performance basic GUI, high performance graphics
support is fundamental in a mobile environment. Basically,
a mobile device is user-interactive and it should support
fast user responsiveness. This is achieved by high perfor-
mance graphics services including GPU device and relevant
components. Note that, most mobile applications require
GPU-accelerated graphics operations since their base SDK
is based on OpenGL ES [5]. Even for basic smooth scrolling
operation, hardware accelerated 2D rendering pipeline is re-
quired. However, such graphics services are poorly sup-
ported in current mobile virtualization environment due to
their limited controllability and information.

In this paper, we propose a virtualization technique for
the Android graphics architecture, which relies on underly-
ing Linux kernel services such as the ION memory allocator,
the Fence synchronization service, GPU device drivers, and
display device drivers. Such kernel services are provided
in Linux as device files. Therefore, we para-virtualize de-
vice files at VFS layer using a split device driver model [6].
All guest graphics requests are captured at VFS layer and
sent to the host. Then, the host Linux device driver directly
handles those graphics requests on behalf of the guest. In
order to connect the request between guest and host, we
need guest-host memory address translation to memory to
enable the host device driver to directly access the guest ad-
dress space. Note that GPU devices can access user memory
directly via their own Memory Management Unit (MMU)
hardware; therefore, we need to set up proper guest-host ad-
dress mappings in the GPU MMU page table. We also need
a guest-host file descriptor mapping because a file descriptor
for the same object could be different between the guest and
host.

The remainder of the paper is organized as follows:
in Sect. 2, motivation and contribution of this paper are de-
scribed; next, detailed analysis of Android’s graphic stack is
presented in Sect. 3; Sect. 4 describes the proposed system
design, and Sect. 5 briefly explains its optimization; Sect. 6
illustrates various experimental results; Sect. 7 discusses re-
lated work and finally, Sect. 8 provides concluding remarks
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and discusses future works regarding this research.

2. Motivation and Contribution

In mobile environment, GPU acceleration based high per-
formance graphics support is an essential functionality to
support from fast user responsiveness to full-featured user
interfaces. Modern mobile OSes such as Android or iOS
use GPU accelerated User Interface SDK based on OpenGL
ES [5]: Android SDK for Android and Quartz Core Frame-
work [7] for iOS. Without GPU acceleration, a user ex-
periences significantly low quality user interfaces such as
non-smooth scrolling or low quality image blurring. Even
worse, without GPU, an app’s performance is significantly
low since the software-based renderer such as [8] shows ex-
tremely low performance. However, existing mobile virtu-
alization techniques [1], [2] do not consider GPU virtualiza-
tion. This is because, these mobile virtualization technolo-
gies are ported from existing server virtualization techniques
such as Xen [6] or KVM [9]. Since most server workloads
are processed in terminal environment, they do not require
high speed graphics processing. Thus existing server virtu-
alization techniques do not require high performance graph-
ics service including GPU device.

In order to see the performance degradation under ex-
isting mobile virtualization environment, we run various ap-
plications on Android JB-MR1 guest on KVM/ARM [2].
The experiment was conducted on an Exynos 5250 Arn-
dale board [10]. It includes an ARM Cortex-A15 dual core
CPUs (1.7 GHz), 2 GB of system memory, and an ARM
Mali-T604 GPU [11]. The guest OS has one VCPU and
512MB of memory. We launched a simple PDF reader ap-
plication [12] and scrolled it as a normal user ordinarily does
but it shows poor scrolling responsiveness. This result is
originated from the lack of OpenGL ES support in the envi-
ronment. Actually, the smooth scrolling is achieved by GPU
accelerated 2D rendering pipeline. We can see further inter-
esting phenomenon when we launch Angry Birds [13]. Its
launching time was more than 3 minutes and average frame
per second (fps) was less than 1 fps. This performance re-
duction is also originated from no GPU acceleration. Al-
though the board has GPU, the guest OS cannot recognize
it. When we launch them again on a native environment
that can use GPU on the same experimental board, the PDF
reader application shows smooth scrolling and the launch-
ing time of Angry Birds is about 6 seconds and it shows
native frame per second (about 60 fps). This performance
gap is significantly high. In order to virtualize GPU, one
of the possible approaches is to configure a physical GPU
device to be exclusively dedicated to a single virtualized
domain for high-performance graphics operations; however,
this does not allow GPU devices to be shared among multi-
ple domains.

As a matter of fact, graphics virtualization in x86
environment is quite familar and relatively well-explored
area. Many previous works such as VMGL [14], Mediated
Passthrough [15], SVGA Architecture [16] and etc. have

well analyzed x86 graphics architecture and shown various
methods to virtualize graphics architecture on x86 platform
using software-based virtualization. In addition, graphic
card manufacturers introduced their SR-IOV-enabled graph-
ics card [17] that supports hardware-based graphics virtual-
ization. Recently, x86 processor manufacturers also intro-
duced hardware-based GPU virtualization technology such
as Intel GVT-s, GVT-d and GVT-g [18]. That is, x86 en-
vironment supports well-organized way to virtualize device
drivers.

In contrast, only several recent researches [19], [20]
proposed graphics virtualization on mobile environment.
One approach is to virtualize every graphics operation like
API remoting [14]. This approach incurs high overhead, re-
sulting in low graphics performance. As a trade-off between
graphics performance and GPU sharing, an OS-level virtu-
alization approach [20] was introduced. Since all graphics
operations are processed in a single OS, it shows near-native
performance; however, it depends on a single OS, resulting
in potentially low reliability.

This is because graphics architecture virtualization on
mobile environment is relatively new area and has not been
well studied yet. The complexity of GPU devices wors-
ens the situation. Furthermore, Android has various com-
ponents and devices for graphics architecture that involve
GPU, Fence, Ion integrated memory allocator, Vsync, Sur-
faceFlinger, display device and so on. Some of the com-
ponents such as Ion allocator, SurfaceFlinger and etc. are
unique features of Android that are not existed in x86. This
not-yet-studied unique features make harder to virtualize
it compared to x86. Note that graphics architecture for
ARM based mobile environment such as Android has been
complicated and optimized to achieve high graphics perfor-
mance even for low-end mobile devices.

In this paper, we propose Android graphics virtualiza-
tion technique based on KVM/ARM environment, which is
fundamental for virtualization in mobile platform. The con-
tributions of this paper are as follows:

1. First KVM/ARM based GPU virtualization technique.
2. Analysis on Android graphics architecture in terms of

mobile virtualization.
3. Design and implementation of para-virtualization

based high performance virtualization technique for
Android graphics architecture.

3. Android Graphics Internal

In this section, we describe the Android graphics architec-
ture based on version Jelly Bean MR1. Figure 1 depicts the
Android graphics architecture stack, in which the process
called SurfaceFlinger plays a central role. SurfaceFlinger
issues allocation requests of memory buffers to the ION de-
vice driver in the underlying Linux kernel via Gralloc HAL
(Hardware Adaptation Layer). After a memory buffer is al-
located, SurfaceFlinger issues OpenGL commands on the
memory buffer to build a graphics image, and then com-
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Fig. 1 The architecture of the Android graphics. Android consists of a
user-level native layer and Linux kernel. The native layer includes HAL
and the SurfaceFlinger service.

poses multiple buffers into a single buffer with the help of
HWComposer HAL. Then, SurfaceFlinger sends the com-
posed buffer to the display device. Finally, the contents in
the composed buffer appear on the physical display device,
such as an LCD.

3.1 ION

ION is an integrated memory allocator for graphics buffer
memory used by I/O devices such as the GPU, display con-
troller, and camera. Before Android 4.0, each vendor pro-
vided its own specific memory allocators and interfaces, so
compatibility was an open issue across different vendors’
Android devices. In order to solve this compatibility issue,
ION was introduced with Android 4.0. Since then, Surface-
Flinger has been able to allocate buffers using ION.

3.2 Fence

Fence is a synchronization framework that facilitates the
management of graphics buffers accessed by multiple pro-
cesses. Memory buffers are concurrently accessed to fill up
with display contents by multiple processes called producers
and consumers.

3.3 GPU

The embedded graphics library (EGL) and OpenGL ES [5]
have been adopted to support 2D and 3D graphics accelera-
tion in Android mobile devices. EGL is an interface worked
with OpenGL ES that is required to manage graphics con-
texts, window system, surface and buffer binding, and ren-
dering synchronization. Also, the OpenGL ES API is used
to render and compose surfaces by applications and Surface-
Flinger. Vendor-provided OpenGL libraries send several file
operations to the GPU device driver.

3.4 VSync and Display

A VSync is a synchronization signal generated by a display
device as a notification that the contents of a buffer are com-
pletely displayed and the buffer is now free. So VSync is
very important for smooth animation. VSync first appeared
in Android Jelly Bean. Typically, a display device sends
VSync interrupts to the display device driver periodically at
the display refresh rate interval.

4. Design

Figure 2 shows the proposed graphics virtualization archi-
tecture on ARM/KVM for Android mobile platforms. Note
that the proposed graphics architecture virtualization tech-
niques can be applied to platforms other than Android be-
cause the virtualization techniques are mostly applied to
Linux kernel.

4.1 Architecture

The proposed graphics virtualization model is based on
para-virtualization, which splits the device driver into two
parts: frontend driver in the guest OS and backend driver in
the host OS. The frontend and the backend drivers commu-
nicate with each other to forward device file requests of a
guest user thread to the associated host QEMU thread. The
split device driver model is a well-known technique to vir-
tualize an I/O device in a virtualized environment. Most of
the existing split device drivers are divided at the common
interface layer, such as a block device bio or network de-
vice socket buffer [6], [21]. These interfaces are generic and
vendor independent, so they are relatively easy to split.

However, GPU devices are not simple to split in the
middle of the device driver because there is no standard or
generic interface. Furthermore, a GPU device driver is pro-
vided as a proprietary driver of a GPU vendor, and most
of the source code is closed. For our research, we chose
the VFS layer as the common interface between the process
and device drivers. VFS requests for a device in a guest
process are sent to a host and handled directly by the host
device driver. In order for the host device driver to handle
guest VFS requests directly, we need two special modules:
Address Translator and FD Manager. Address Translator
translates the guest virtual address (GVA) to a host virtual
address (HVA). A GVA in the request from a guest is trans-
lated to an HVA so that a host driver can access the guest
address space directly. The other component is FD Man-
ager. The request of a guest process is delivered and issued
in the host backend driver, but the file descriptor in the host
and guest may be different. FD Manager maps file descrip-
tors between the host and guest. A detailed explanation is
provided in the Device File Virtualization section. Four de-
vice files are virtualized the Android graphics architecture:
GPU device, ION device, display device, and Fence. Each
device driver is implemented as a loadable kernel module.
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Fig. 2 Architecture of the proposed virtualization model.

In our prototype, /dev/mali0, /dev/ion, and /dev/graphics/fb0
are implemented and represent the GPU device, ION device,
and display device, respectively. For Fence, it is not a de-
vice driver, but it is generated in a GPU and display device
driver and has its own file operation table. Thus, a process
can access Fence using its file descriptor.

4.2 Guest-Host Communication

Frontend/Backend Driver: The frontend driver is served
as a device file in the guest. It delivers device file requests
from a guest process to the backend driver using a hypercall.
Then, the backend driver delivers the request to the physical
device driver using the VFS interface to generate all of the
kernel structures for the request in the host. The backend
driver is running in the context of the host QEMU thread
of the hypercall issued VM since the VM is running in the
user space of the QEMU thread. Thus, the delivered request
is issued to the physical device driver by the host QEMU
thread. After the backend driver finishes the physical device
driver service, it returns to the frontend driver with the result
from the physical device driver.
Synchronous/Asynchronous Communication support
between Backend and Frontend Driver: In order to com-
municate between backend (host) and frontend (guest VM)
driver, synchronous and asynchronous methods are sup-
ported according to the file operation. Most of the file oper-
ations, such as open(), close(), ioctl(), mmap(), and mun-
map(), are synchronously handled. These operations use
a hypercall to deliver a request from the guest to the host.
Note that while the request is being processed in the host,
the entire guest VM that issued the hypercall is blocked un-
til the hypercall returns in the synchronous method.

However, read() operation is asynchronously processed
between frontend and backend. In general, when read()
operation issues, the operation is blocked and waits for
the completion (e.g. interrupt) from corresponding device.

Fig. 3 read() processing sequence. The purpose of read() is waiting and
reading a result from an ioctl(). The guest read() waits (1) for the ioctl()
processing completion (5). If the communication is in synchronous mode,
thread #1’s read() will wait for a result forever, and it never returns to the
guest OS because thread #2 cannot issue the ioctl() command with the guest
OS being blocked owing to the unreturned read() from thread #1.

Thus when the frontend driver delivers read() to the back-
end driver, the read() waits in the backend driver. Therefore,
if read() operation is synchronously processed, the whole
guest VM is blocked forever. Figure 3 illustrates an ex-
ample sequence of read() processing in current communica-
tion model. In Fig. 3, the guest application has two threads.
Thread #1 calls read() to wait for a result (1). Then thread #2
calls ioctl() to deliver a device (e.g., GPU) command (2) and
returns (3). The command is delivered to the device (4) and
completed (5). Then the waited read() call reads the result
and returns to the guest (6). In this sequence, if the (1) read()
call is synchronous, then (2) thread #2’s ioctl() call cannot
be issued because the whole guest VM is blocked by the
unreturned read() hypercall from thread #1. Specifically, in
Mali-GPU T-604 [11], read() call waits for the completion of
an ioctl command IOCTL KBASE FUNC JOB SUBMIT
to read the result of the command.

To address this issue, asynchronous communication
methods are supported. The communication method from
a guest to a host is the same with the synchronous type (i.e.,
hypercall interface), but the returning method is different.
When the request arrives at the host, it wakes up the worker
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Table 1 Virtualized device file operations

Virtual Device Virtualized File Operations
Virtual GPU Device open(), close(), ioctl(), read(), mmap(),

*munmap()
Virtual Display Device open(), close(), ioctl()
(Framebuffer)
Virtual ION Device open(), close(), ioctl()
Virtual Fence close(), ioctl()

* Actually, munmap() is not categorized as a file operation but works with
mmap().

threads for this request and immediately returns to the guest.
In the guest, the process that issued the request is sleeping,
but the guest itself is not blocked because the hypercall is
returned. This allows the guest to run the other processes
while the I/O request is running on the host. In the host, a
worker thread runs the I/O request. After the worker thread
is completed, it sends a virtual interrupt to the guest. The in-
terrupt handler in the guest catches this interrupt and wakes
up the sleeping process that issued the request. We man-
age these threads using thread pools to avoid thread cre-
ation/release overhead because they are frequently created
and released.

4.3 Device File Virtualization

Android graphics architecture requires GPU device, display
device, ION device, and Fence. All of these, except Fence,
are provided as device files in Linux kernel. Fence is not
provided as a device file, but it is backed with a file and
file operations. Because file operations are to be virtual-
ized in our proposed approach, Fence can also be consid-
ered in the same way as device files. Our approach is to
para-virtualize file operations of device files. All requests
are captured at VFS layer of device files in the guest. These
requests are sent to the host and are directly handled by the
host’s Linux kernel. That is, graphics requests issued by
the guest VM are directly handled by the host VM. In order
to enable this handling, several address translations and file
descriptor management are applied to graphics requests by
the virtualized device driver in the guest VM. Table 1 sum-
marizes the device file operations required to virtualize the
Android graphics architecture.
Address Translation: Guest graphics I/O requests include
memory addresses specified in GVAs. Our proposed tech-
nique allows the host to directly handle guest graphics re-
quests, i.e., it allows the host device and its device driver
to directly access guest memory. In order to enable this di-
rect handling of guest requests by the host, it is essential to
translate memory addresses represented by the GVA into the
corresponding memory addresses represented by the HVA.
Note that guest I/O requests sent to the host are processed
by the QEMU thread. (In KVM, one QEMU thread is as-
sociated with one guest VM.) In summary, a guest applica-
tion issues graphics I/O requests with memory addresses in
a GVA. The frontend driver in the guest forwards these I/O
requests to a QEMU thread in the host domain. The QEMU
thread handles these I/O requests by invoking the backend

Fig. 4 Memory addresses for address translation. The GVA is mapped to
the HVA. The host device driver can access the GVA using its correspond-
ing HVA.

device driver. In order for the QEMU thread to handle these
I/O requests with memory addresses in a GVA, we need to
translate memory addresses in the GVA into addresses in the
HVA.

Figure 4 shows the address relationships between the
guest user space and a host device driver. In the guest, a
GVA is mapped to a GPA by the guest page table, and the
GPA is mapped to an HPA by the Stage-2 page table. In
KVM, an HVA is also mapped to an HPA by the host page
table. That is, an HPA can be accessed by an HVA or a GVA.

The module called Address Translator in the backend
device driver is responsible for the GVA→HVA address
translation. The details of the translation operation are de-
scribed as follows. Address Translator parses the memory
addresses (GVAs) specified in the I/O requests and trans-
lates them to HVAs. Since the host device driver uses
copy from/to user() to access user space addresses (GVAs),
tracking GVAs is simple. When a GVA is tracked, it is trans-
lated to a GPA. To translate a GVA to a GPA, a software page
table walking method can be used. In the ARM architecture,
there is an address translation operation named ATS1CPR
that translates a VA to a PA [22]. We used this operation to
translate GVAs to GPAs. In KVM, there is a special map-
ping structure called a KVM memory slot. In this structure,
GPA→HVA mapping information is stored. We used this
structure to translate GPAs to HVAs. This translation allows
the host device driver to directly access the GVA in the re-
quest using the HVA.

In addition, we have to consider mmap(), which user
processes can issue I/O requests directly to a device. Linux
kernel sets up a mapping entry in the page table of a user
process according to mmap(). Moreover, if mmap() is issued
on a device’s memory and the device has its own MMU,
Linux kernel also sets up a corresponding mapping entry
in the device MMU. For example, the ARM Mali GPU de-
vice [11] has its own internal MMU. The ioctl() command of
KBASE FUNC JOB SUBMIT has the arguments to spec-
ify the job chain list that includes several guest memory ad-
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dresses to represent external graphics resources such as tex-
ture images. So, before issuing this ioctl() command, a user
process has to set up Mali GPU MMU mappings in advance
by mmap() operations.

Now, we describe how guest and host Linux kernels
handle mmap() and then how to set up mapping entries in
the GPU MMU page table. When a guest user process calls
mmap() on a guest virtual GPU device, the guest Linux ker-
nel can set up a mapping of GVA→GPA only after the des-
tination GPA and its associated HVA are dynamically allo-
cated by the host Linux kernel. The guest mmap() call is
sent to the host QEMU thread, which finally issues mmap()
to a physical GPU device. Then, the host Linux kernel sets
up a mapping of HVA→HPA. Note that the host virtual
memory region in the HVA is arbitrarily allocated by the
host Linux kernel. In order to complete the mmap() opera-
tion, the guest Linux kernel needs to know the dynamically
allocated HVA and its associated GPA in order to set up a
GVA→GPA mapping in the guest.

The problem here is that a guest OS does not recognize
whether a GPA is mapped or not since the allocated GPA
by mmap() is established by the backend driver in the host
OS. Thus, the GPA can be re-allocated or overwritten by the
guest OS because the GPA is still un-allocated state for the
Guest OS’ point of view. In order to solve this problem,
two design approaches can be available. One approach is
modifying guest OS to recognize the mapping state of the
mmapped GPA and another approach is reserving a GPA
area for mmap() support. The former requires guest OS
modification for mmap() and munmap(). However, if the
guest OS has unmanaged-physical address space, the latter
approach can be implemented without guest OS modifica-
tion. For example, if the guest OS has 4GB of main memory,
above 4GB of GPA is guest OS unmanaged. So we can use
the area as reserved for mmap() support. In our prototype,
we use 32-bit guest and 32-bit host OSes since Cortex A15
does not support 64-bit architecture but it supports LPAE
that extends physically addressable space up to 40 bits.

Thus, in our design, the guest physical address space
above the 4 GB physical address space is reserved for
mmap() on virtual devices and is statically mapped to the
host virtual address space. That is, a HVA has a one-to-
one mapping to a GPA. Since this reserved space is above
the 4 GB linear address space, a 32-bit guest Linux kernel
can be used without any modification (see Fig. 5). In or-
der to maintain a one-to-one mapping between a GPA and
an HVA, the memory slots in the KVM hypervisor are pre-
installed for this reserved GPA space (above the 4 GB linear
address space) to be mapped into HVA space. Therefore,
the guest Linux kernel can set up a GVA→GPA mapping
even if the address space of the HVA is dynamically created
by mmap(). This space is called the “Guest-OS-unmanaged
address area” in Fig. 5 and is possible because of ARM’s
LPAE extending the address space to 40 bits.

Next, we describe how to set up mapping entries in the
GPU MMU page table. When mmap() is issued for a GPU
device, the host Linux kernel sets up an HVA→HPA map-

Fig. 5 Memory addresses for mmap() support. The GPA area for
mmap() is located in the Guest-OS-unmanaged area because the guest OS
does not recognize the new GPA→HPA mapping that is created by the
backend driver.

ping, and the corresponding mapping entry is set up in the
GPU MMU page table. We need to change the mapping
entry of HVA→HPA to the mapping entry of GVA→HPA
in the GPU MMU so that the physical GPU device can di-
rectly access the guest memory specified in I/O requests (in
the GVA). In order to update the mapping entry, the host
Linux kernel needs to know the corresponding GVA allo-
cated by the guest Linux kernel. (Recall that when a guest
user process calls mmap(), the VFS layer allocates a free
GVA that will be mapped to the target GPA.) This is simply
done by sending the GVA from the guest frontend driver to
the host backend driver. Then, the host Linux kernel can set
a GVA→HPA mapping entry in the GPU MMU page table.
A new GPU context is created when a process calls open()
on the GPU device. GPU MMU entries are managed inde-
pendently according to GPU contexts. Therefore, each pro-
cess can freely set up mappings in the GPU MMU without
any interference from other processes.
File Descriptor Management: FD Manager is responsible
for file descriptor mapping between a guest and a host. File
descriptors are created in two ways: most are created by the
open() system call from a user process, and some are created
implicitly by a device driver itself without an explicit open()
system call from a user process. For example, in Android
graphics architecture, file descriptors of Fence objects and
buffer memory objects are created implicitly by the Fence
and ION device driver.

When a process opens a device, a file descriptor is re-
turned to the process and will be used as a handle to access
the device. In our graphics virtualization architecture, if a
guest process calls open(), a new file descriptor is created by
the guest OS, and the open() request is sent to the associated
QEMU thread on the host. Then, the QEMU thread also
calls open() to create a new file descriptor in the host OS.
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Thus, we have two distinct file descriptors, one in the guest
OS and the other in the host OS, for a single open() system
call issued by a guest user process. FD Manager keeps this
pair of file descriptors as a file descriptor mapping. Later,
when a guest file operation is to be sent to the host, FD
Manager translates the guest file descriptor into the host file
descriptor based on the mapping. In some cases, FD Man-
ager should analyze the arguments of a device file operation
because there are device file operations with file descriptors
encapsulated in arguments. For example, the IOCTL com-
mand S3CFB WIN CONFIG specifies a file descriptor of
buffer memory in the command argument. In this case, FD
Manager should parse the arguments of IOCTL commands
for the file descriptor mapping.

Now, we discuss the second case, in which file descrip-
tors are created by a device driver without an explicit open()
system call from a user process. In Android graphics archi-
tecture, file descriptors of Fence objects and buffer mem-
ory objects are created implicitly by the Fence and ION
device drivers. In our graphics virtualization architecture,
this means that file descriptors can be created by host device
drivers without the guest OS being aware of the creation of
these file descriptors. In order to resolve this issue, FD Man-
ager on the guest OS has an additional function to create a
new file descriptor whenever a new file descriptor is created
implicitly by host device drivers.
Device File Operations: Basically, when a file operation is
issued from a guest process, FD Manager finds the corre-
sponding file descriptor for the host and sends it to the host.

1. open(): open() creates a new file descriptor for the
guest and host. FD Manager stores the file descrip-
tors of the guest and host for later access. The pa-
rameter of open() contains a path to the device file
opened. This path is allocated in the GVA and accessed
by copy from user(). This path should be delivered to
the host so that the host can open the correct device file.
Address Translator translates the GVA that represents
a path to the HVA.

2. close(): When a guest issues a close() call on a device
file, both the guest and the host release the file descrip-
tor for the device file. FD Manager removes the file
descriptor mapping information between the guest and
host.

3. ioctl(): ioctl() contains many commands and arguments
for the GPU. Address Translator translates the GVA to
an HVA for some of the arguments that are accessed by
copy from/to user().

4. read(): Address Translator translates the GVA to an
HVA for arguments such as the user buffer address ac-
cessed by copy from/to user().

5. mmap(): As explained in the Address Translation sec-
tion, an mmap() operation creates a mapping between
the guest user address (GVA) and host physical address
(HPA). If mmap() is issued with virtual GPU device
memory, a mapping entry of GVA→HPA will be set up
additionally in the GPU MMU page table.

6. munmap(): When a guest process calls munmap(),
the associated mapping is destroyed both in the guest
Linux kernel and host Linux kernel. In case of GPU de-
vice memory, the corresponding mapping entry in the
GPU MMU should also be deleted. In order to handle
the mapping removal by munmap(), we register a call-
back function in vm operations.close() when mmap()
is executed in the guest kernel (e.g., frontend driver).
Later, the callback function is invoked when munmap()
is issued by a guest process.

4.4 VSync Support

Since VSync is the signal to draw all surfaces to the display
device, virtualizing VSync is required on Android platform.
The VSync event is received by a poll() system call on de-
vice file /sys/. . . /vsync. The guest event thread waits for the
VSync signal until the event has arrived. The host display
device generates the VSync signal at 60 FPS in most cases
to the host device driver. Thus, we need to deliver this event
to the guest OS where the physical display device does not
exist. In the proposed model, a VSync event in the host is
relayed to the frontend driver. When the host kernel inter-
rupt handler receives the VSync interrupt, it sends this inter-
rupt to the guest kernel via virtual interrupt. After the guest
event thread receives the VSync event, it checks device file
/sys/. . . /vsync to read the sync value. This device file on the
guest is mapped to the same device file (/sys/. . . /vsync) on
the host side. This mapping is established using Stage-2
page table remapping.

4.5 Device Sharing

In order for a single device to support multiple guest OSes,
device sharing should be enabled. Our virtualization model
is based on the host device driver. Fortunately, GPU, Fence,
and ION drivers allow multiple accesses from multiple pro-
cesses. This feature is inherited by the multiple threads in
multiple VMs because when a process in a VM opens the
device driver, a new file descriptor is returned to the process
in the VM and a new context is created for the process. The
display device is special because it is the final output device.
If multiple VMs send their frame buffers simultaneously, the
display output can be abnormally mixed. In the proposed
model, we support a foreground / background VM model
for the display device. In this model, only foreground VM
can access the display device. Therefore, this model gives
performance benefit for foreground VM that a user directly
uses. Please note that, in Android, overlaid images such as
status bar on top of the screen are also applications. Thus
this kind of overlaid images are located inside of a screen
in a VM by the VM’s SurfaceFlinger. In evaluation section,
we show the foreground VM’s GPU running performance in
multi-VM case.
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4.6 An Illustrative Example

In this section, we describe how this works based on the
access path diagram in Fig. 6. The GVA is mapped to the
HPA via the GPA that is skipped in Fig. 6, and the HVA is
also mapped to the HPA.

In order to virtualize the graphics architecture, we need
to support four access paths. When a guest user thread is-
sues a device driver request to the frontend driver, the re-
quest is delivered to the backend driver using the hyper-
call interface, and the backend driver delivers the request
to the device driver. Thus, the guest request is sent to the
host device driver. The solid line in Fig. 6 shows this path.
Then the device driver may access a user virtual address via
copy from/to user(), which can access the host user virtual
address. In the proposed mechanism, the GVAs in the re-
quest are translated to corresponding HVAs by the Address
Translator in the backend driver. As a result, the host de-
vice driver can successfully access the guest user address
space using an HVA because the host user QEMU has the
full address space for its guest VM. The dotted line in Fig. 6
shows this path. With this path in place, the request can be
successfully processed in the device driver.

Some devices, such as a GPU, require access to user
virtual addresses to read/write data directly. As explained
in mmap() support of the section Address Translation, the
problem is that the command sets issued to the device are not
open to a developer due to the vendor’s policy. That is, the
GVA in the command cannot be translated to the HVA. We
solved this problem by altering the GPU page table entry for
GVA→HPA. Thus, the device can directly access the cor-
rect memory address using the GVA. The dash-dotted line

Fig. 6 An illustrative accessing path diagram for the proposed system.
Each line shows the accessing path between various components.

in Fig. 6 shows this path.
The VSync event is generated from the display device.

When the display device generates this event, the user ap-
plication can read the VSync event value via the sysfs in-
terface. In the proposed system, the /sysfs/. . . /vsync file on
the guest OS is mapped to the host OS’s file. When the
display device generates a VSync event, a virtual interrupt
is generated from the backend device driver to the frontend
device driver, and the guest user thread can read data from
the mapped /sysfs/. . . /vsync. Thus, all graphics-architecture-
relevant components can communicate with each other
without any problems.

5. Optimization

5.1 Fence Operations: File Structure Reusing and Close()
File Operation Coalescing

In Android, synchronization entities, Fences, are fre-
quently created and released to synchronize graphics buffers
between consumers and producers. Figure 7 shows
the number of ioctl() calls issued when the 3D bench-
mark is running on an Arndale board [10]. Note that
a new Fence is created by the backend driver in the
host for those ioctl() calls marked with an asterisk (*)
(i.e., SYNC IOC MERGE, S3CFB WIN CONFIG, and
KBASE FUNC JOB SUBMIT). A new file structure must
be created in the frontend driver of the guest kernel after the
backend driver in the host creates a new Fence. The newly
created file structure in the frontend driver is associated with
the Fence just created in the backend driver in the host.

The overhead of creating a file structure in the frontend
driver is not negligible. Thus, an optimization technique
called file reuse is applied. The idea is to create several file
structures in advance for this purpose. When a new file is
needed in the frontend driver, one of these pre-created file
structures will be used. In the prototype, we pre-allocated

Fig. 7 Number of ioctl() commands called during 3D benchmark Nena-
mark2 execution. A new Fence is created when a command marked with
an asterisk (*) is issued.
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60 file structures based on our empirical estimation. We
also apply close() file operation coalescing. In order to re-
lease each Fence, a close() file operation is called. This fre-
quently called close() operation does not need to be handled
synchronously. So, when a guest application calls close(),
the frontend driver does not forward the close() operation to
the host. Instead, this close() operation is stacked in a tem-
poral buffer. When the buffer is full, the frontend driver for-
wards the buffered close() operations to the backend driver
by issuing HVC (hypervisor call) commands.

5.2 Virtual Interrupt Optimization

In KVM virtualization environment, one QEMU process is
associated with one guest. A QEMU process is responsi-
ble for generating virtual interrupts to the guest OS since
(virtual) I/O devices for the guest OS are emulated by the
QEMU process. When a virtual I/O device generates an in-
terrupt, the QEMU process issues a KVM ioctl() to gener-
ate a corresponding virtual interrupt. This ioctl() operation
causes user-kernel context-mode switching overhead on the
host side. As an optimization, we bypass the QEMU process
to generate virtual interrupts. That is, the backend driver
directly issues KVM ioctl() commands to generate virtual
interrupts without relying on the QEMU process.

6. Evaluation

6.1 Prototype and Workload Description

We implemented the proposed virtualization technique on
an Exynos 5250 Arndale board [10]. It included an ARM
Cortex-A15 CPU with dual cores (1.7 GHz), 2 GB of sys-
tem memory, and an ARM Mali-T604 GPU [11]. Total LOC
of the proposed method is about 2K. Specifically, we imple-
mented frontend and backend driver (1.5K LOC). We do not
modified core KVM/ARM architecture and Android plat-
form. We added a new hypercall on KVM/ARM to com-
municate between guest and host (0.5K LOC for hypercall
handler). We simply modified GPU device driver on the host
side. The GPU device driver establishes HVA-HPA map us-
ing mmap(). We modified the map to GVA-HPA map so that
the guest OS can directly access GPU. To enable this, only
3 LOC are modified in the GPU device driver.

The guest VM was running Android JB-MR1 with
Linux kernel 3.9 and was configured to run with one
VCPU and 512 MB of memory. The host environment of
KVM/ARM was Android JB-MR1 with Linux kernel 3.4.5.
Note that KVM/ARM is available in Linux kernel 3.9 or
later. To deal with this version mismatch, we decided to
port KVM/ARM from Linux kernel version 3.9 to Linux
kernel 3.4.5. The reason we chose Linux kernel 3.4.5 for the
KVM/ARM host was the limited availability of GPU drivers
in the Arndale board. It is known that the Arndale board
officially supports Linux 3.4.5 with device drivers and de-
vice tree binary that is incompatible with Linux kernel ver-
sion 3.9 or later. Table 2 shows a detailed description of 3D

Table 2 3D benchmark descriptions

Benchmark Description
Nenamark2 [23] OpenGL ES2.0 benchmark using realistic

scene
RD3D Benchmark [24] OpenGL ES2.0 benchmark with CPU-based

physics calculation
Bonsai Benchmark [25] 3D effect based benchmark such as static

lighting, motion blur, bloom, and Sepia ef-
fect

XBenchmark [26] A benchmark to test CPU and GPU using
various technologies

KFS Benchmark
(Galactic core) [27]

A simple benchmark to test Android device’s
OpenGL performance

Fig. 8 Performance results of 3D benchmarks. “Native” means the per-
formance of a native Linux without any virtualization. “Virt” and “Virt +
Opt” represents the performance results of our proposed technique without
optimization and with optimization, respectively.

benchmarks that we used to evaluate the proposed system.
All of the benchmarks were collected from the Google Play
store in Android [28].

We have uploaded a demo video of the proposed
method on Youtube [29]. The video includes performance
comparison (S/W Renderer v.s. Virtual GPU, Native GPU
v.s. Virtual GPU) and Virtual GPU Sharing using the pro-
posed method.

6.2 Performance Analysis

Figure 8 shows the performance results of the 3D bench-
marks. “Virt + Opt” is the result of our proposed tech-
nique with all of the optimization techniques described in
Sect. 5 (i.e., Fence and virtual interrupt optimization). Fig-
ure 9 shows the normalized performance results with “Na-
tive” as a base. VCPU utilizations were also measured to
evaluate how intensively each benchmark consumed CPU
cycles. For a fair comparison between native Linux and our
model, the guest VM was configured to have a single VCPU
even though the board provides two physical CPUs.

It is shown in Fig. 9 that our proposed virtualiza-
tion model provides over 96% of native performance when
VCPU utilization is not saturated (i.e., 99.6%, 97.9%, and
96.1% in Nenamark2, RD3D, and Bonsai benchmarks, re-
spectively). The optimization techniques improved the per-
formance of Bonsai and KFS benchmarks from 96.1% to



1412
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

Fig. 9 Normalized performance to native (bar) and VCPU utilization
(line). 100% of normalized performance is the same with native perfor-
mance.

Fig. 10 Performance interference by SysBench workload, which was
configured to generate CPU-intensive workloads. FPS results of Nena-
mark2 benchmark.

96.7% and from 90.1% to 91.4%, respectively. In cases of
XBenchmark and KFS benchmarks, the performance was
near 80% and 90% of native performance, respectively.
This performance degradation was due to their high CPU-
intensive operations. As depicted in Fig. 9, the total VCPU
utilization of these benchmarks was 100%. A detailed ex-
planation is presented in the next section. As shown in
Fig. 9, CPU utilization may affect the performance of graph-
ics applications. We further evaluated the performance inter-
ference by CPU-intensive workloads. In the experiment, the
SysBench benchmark tool [30] was used to generate CPU-
intensive workloads.

In Fig. 10, we show how the performance of Nena-
mark2 varied with increasing CPU-intensive workloads, that
is, increasing the number of concurrent SysBench processes.
When the number of SysBench processes is zero or one, it
still supports 60 FPS, which was originated from the VSync
frequency of the Android (60 Hz). We believe that the na-
tive performance of the Nenamark2 benchmark was much
higher than 60 FPS, but the average FPS would be cut by 60
FPS. When we further increased the number of SysBench
processes, the performance of the Nenamark2 benchmark
degraded, which means that the performance of our pro-
posed virtualization technique is dependent on total VCPU
utilization.

Fig. 11 Average execution time profiling result for IOCTL commands
related with Fence operation under workloads in Table 2. (B) indicates
“Before Optimization” and (A) indicates “After Optimization”.

As depicted in Fig. 8 and 9, the optimization results
in 2-3 FPS increased performance at best case. However,
even this small FPS gain gets important when a user needs
real-time interactivity and accuracy in interactive simula-
tion such as 3D game or virtual reality contents. In order
to see the effectiveness of the proposed optimization tech-
niques, we profiled IOCTL commands related with Fence
operation because the two optimization techniques handle
Fence operation and virtual interrupt. They improve fron-
tend driver and backend driver execution time, respectively.
Figure 11 shows detailed average profiling result on major
IOCTL commands for the optimization technique. As de-
picted, they optimize about 60% of the frontend driver exe-
cution time and about 50% of the backend driver execution
time.

6.3 Overhead Analysis

Hypervisor interventions are required in KVM/ARM virtu-
alization operations such as coprocessor accesses, instruc-
tion/data aborts, secure monitor calls (SMCs), and hypervi-
sor calls (HVCs). Our proposed virtualization technique for
Android graphics generates additional HVCs. In order to
analyze the overhead of our proposed method, we catego-
rized hypervisor interventions into two groups: HVCs gen-
erated for file operations by our proposed method (denoted
as HVC FEDrv) and the remaining hypervisor interventions
required for KVM/ARM operations (denoted as Others).

Figure 12 shows the frequency of HVCs when running
3D benchmarks. It is observed that the hypervisor inter-
ventions required by our model, HVC FEDrv, took more
than 50% of hypervisor traps in all 3D benchmarks. In par-
ticular, XBenchmark generated a much higher number of
hypervisor traps than other 3D benchmarks, and the KFS
benchmark generated a relatively small number of hypervi-
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Fig. 12 HVC frequency and kernel VCPU utilization for various 3D
benchmarks. “HVC FEDrv” means HVC called by the graphics archi-
tecture virtualization model and “Others” means HVC called by default
KVM/ARM.

sor traps. This means that the virtualization performance
is dependent on the total VCPU utilization rather than the
number of hypervisor traps. The XBenchmark and KFS
benchmarks caused 100% VCPU utilization (Fig. 9), which
is why they show relatively higher performance degradation
than other 3D benchmarks.

Figure 12 also shows kernel VCPU utilization. The
KFS benchmark shows almost 5% of kernel VCPU utiliza-
tion (i.e., 95% of user VCPU utilization). In other words,
the performance deduction for the KFS benchmark is mostly
due to the native virtualization overhead of KVM/ARM. In
contrast, XBenchmark shows almost 40% of kernel VCPU
utilization (i.e., 60% of user VCPU utilization). It also has a
high HVC FEDrv frequency. Thus, the performance could
be degraded from our virtualization model.

If a workload consumes much time in the kernel, a
larger performance improvement by the optimization tech-
niques can be expected. The higher frequency of hypervi-
sor traps in XBenchmark shows that the performance im-
provement by the optimization techniques in XBenchmark
is much larger than in other 3D benchmarks. The optimiza-
tion improves about 6.4% for XBenchmark (0 - 1.5% im-
provement for other 3D benchmarks). In the cases of Nena-
mark2, RD3D, and Bonsai Benchmark, 6.6K, 7K, and 8K
hypervisor trap events were generated, respectively. The
number of trap events for these benchmarks was not so
small, but virtualization overhead was very low (their virtu-
alization overhead is less than 2.1% in Fig. 9). There are two
reasons for low virtualization overhead in these three bench-
marks. First, VCPU utilization is not 100%. Nenamark2,
RD3D, and Bonsai Benchmark cause 70%, 86%, and 81%
VCPU utilization, respectively, as depicted in Fig. 9. This
means that VCPU still had sufficient computational power
to serve graphics architecture virtualization. Second, their
benchmark results for native performance were almost 60
FPS, i.e., full frame rate in Android. In Android, a display
update rate is based on a VSync event, and its frequency
is about 60 Hz, so even though SurfaceFlinger can display
more than 60 FPS, the frame rate will be cut by an average

Table 3 Multiple VM benchmark results

Case VM Workload FPS

Multi-VM Case #1
VM1 Nenamark2 59.7
VM2 RD3D 58.6

Multi-VM Case #2
VM1 Nenamark2 59.7
VM2 BonsaiBench 56.1

Multi-VM Case #3
VM1 Nenamark2 59.7
VM2 XBench 44.9

Multi-VM Case #4
VM1 Nenamark2 59.7
VM2 KFS-Galactic core 26.0

Single-VM Case

Nenamark2 59.9
RD3D 58.7
BonsaiBench 56.1
XBench 44.9
KFS-Galactic core 26.2

of 60 FPS; thus, virtualization overhead can be hidden if the
native performance is 60 FPS.

6.4 Multiple-VM Case

In order to show the effectiveness of the proposed method,
we launch two android virtual machines (VMs) that use
GPU. Each VM has 512MB of system memory and
one VCPU. We measured the foreground-background VM
switching latency since a foreground VM can access dis-
play device. To measure it, we run Nenamark2 workload
in VM1 with a foreground state and RD3D benchmark in
VM2 with background state at the same time. When we
conduct foreground/background switch from VM1 to VM2,
the switching latency is about 8.5 microseconds.

We also run various GPU workloads on two VMs. Ta-
ble 3 shows the result of various GPU workloads. In this
experiment, VM1 runs Nenamark2 benchmark and VM2
runs various workloads. The result shows that the perfor-
mance is almost the same compared to the result of single
VM case. This result is originated from our sharing model
(Foreground/Background model). In this model, only a fore-
ground VM directly uses display device so that a user can
experience high performance GPU execution for currently
displaying VM.

7. Related Work

There are several methods to support GPU virtualiza-
tion. They can be classified into device emulation [31],
API remoting [14], [19], device pass-through [32], para-
virtualization [6], [21], and OS-level virtualization [20].

The device emulation method supports virtual GPU de-
vices using software, so it is too slow, and it cannot support
full GPU functionality such as hardware-accelerated graph-
ics. This kind of method is mainly used in the server virtu-
alization environment.

The API remoting method forwards the graphics li-
brary API to the corresponding remote-side GPU device
driver, so this method can support many different device
drivers from several vendors in the host environment. De-
spite this advantage, this method has problems such as low
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performance due to the bulk data transfer and a flexibility
issue due to requiring graphics library stack compatibility
between the guest OS and the host OS. Dowty et. al. intro-
duced hosted GPU acceleration [16] that is a mixed version
of the device emulation and API remoting. They emulated
SVGA Device and API remoting (only support for Direct3D
on Windows XP). Therefore, it still contains the limitations
of the API remoting that are low performance and depen-
dency of specific version of user-level graphics librararies
such as OpenGL. In contrast, the proposed method is not af-
fected by user-level graphics libraries because it virtualizes
graphics device driver that is in the kernel and this design
achieves high performance as well. In addition, this driver-
level design gives much more compatibility than user-level
design because device drivers are not easily updated com-
pared with user-level libraries.

The device pass-through allows a guest VM to use
physical GPU devices directly without hypervisor interven-
tion. However, this approach cannot share the GPU devices
because the pass-through enabled guest VM monopolizes
the GPU device. To solve this sharing problem, NVIDIA
has recently announced a hardware-supported GPU pass-
through virtualization solution called NVIDIA GRID [17],
which is similar to the network SR-IOV techniques [33]. Al-
though this technique guarantees high performance, it re-
quires expensive hardware devices.

Mediated pass-through technique is recently intro-
duced [15]. They can run native GPU device driver in the
guest OS. However, this approach has additional resource
management overheads since GPU device drivers can si-
multaneously run on each guest. This makes difficulty to
port it to other platform since the resource management
mechanism is driver-dependent. Please note that the native
GPU device driver already supports multiple accesses and
our proposed method leverages this feature and it gives high
portability. Moreover, applying to Android platform is much
more difficult because of many sophisticated components of
the Android Graphics stack such as Fence or ION.

Para-virtualization can improve I/O virtualization per-
formance by providing a split device driver model between a
guest OS and a host OS. In addition, this approach makes it
easy to share devices among multiple VMs. However, exist-
ing split driver models mainly focus on x86 architecture in-
stead of the ARM architecture. Also, I/O para-virtualization
is hard to be applied in the Android OS because of Android-
specific components such as ION, Fence, and VSync. In this
paper, we suggest the FD manager and VSync virtualization
to solve these problems.

Cells [20] provides a high-performance GPU virtual-
ization using OS-level virtualization methods on ARM-
based Android platforms. However, fundamentally, OS-
level virtualization has significantly more problems than
system-level virtualization. It cannot support isolation
among guest VMs. That is, if a guest has a system fault,
it can be delegated to the host. This is an inevitable problem
of OS-level virtualization. However, the proposed technique
does not have this problem because it is a system-level vir-

tualization technique.

8. Conclusion and Future Work

In this paper, we proposed an efficient technique to virtual-
ize the Android graphics architecture in a KVM/ARM envi-
ronment. The graphics architecture of the Android platform
relies on device files of the underlying Linux kernel: GPU
devices, the ION integrated memory allocator, display de-
vices, and the Fence synchronization framework. Our tech-
nique is to para-virtualize these device files using a split de-
vice driver model in the VFS layer. That is, the proposed
technique enables the host to directly handle device file re-
quests issued by the guest. The main idea include address
translation and file descriptor mapping. Further optimiza-
tions, such as Fence operations and virtual interrupt genera-
tion, were applied for high-performance graphics.

The experimental results show that the proposed vir-
tualization technique achieves almost 84%-100% perfor-
mance compared with the native application. In addi-
tion, the foreground/background sharing model gives high-
performance graphics execution for the user interactive fore-
ground VM when multiple VMs are running. Our future
work includes enhancing the security of the proposed tech-
nique. Because our model is based on para-virtualization us-
ing a split device driver model, security concerns may arise
due to shared host device drivers. We are currently attempt-
ing to use the concept of Linux containers to isolate host
device drivers from each guest domain with the concept of
Linux containers [34].
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