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1 Introduction

It has been proposed that the Type IIA string theory on the AdS4×CP3 background is dual

to the three-dimensional superconformal N = 6 Chern-Simons theory with gauge group

U(N)k ×U(N)−k known as the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [1].

To be more precise, since the ABJM theory is motivated by the description of multiple

M2-branes, it is dual to the M-theory on AdS4×S7/Zk geometry with N units of four-form

flux turned on AdS4, where N and k correspond to the rank of the gauge group and the

integer Chern-Simons level respectively. When 1 � N1/5 � k � N , the M-theory can be

dimensionally reduced to the Type IIA string theory on the AdS4 ×CP3 background.

After the proposal of this new type of duality, various supersymmetric embeddings

of D-branes have been considered. Embeddings for the giant graviton [2–10], adding fla-

vor [11–14], and some other purposes [15, 16] are the examples studied extensively. With

some other motivations, we may also consider other types of supersymmetric D-brane em-

beddings or configurations. Since each of them would correspond to a specific object in

the dual gauge theory, the exploration of supersymmetric D-branes may be regarded as an

important subject to enhance our understanding of duality. However, unlike the case of

flat spacetime, the sturucture of AdS4×CP3 background is not so trivial and the solution

of the associated Killing spinor equation is rather complicated. This makes the case by

case study of supersymmetric D-branes laborious, and thus it seems to be desirable to have

some guideline. In this paper, we focus especially on the most supersymmetric cases and

are trying to classify the 1/2-BPS D-branes in the AdS4 ×CP3 background. In doing so,

we are aiming at obtaining the classification data as a guideline for further exploration of

supersymmetric D-branes.

For the classification of D-branes, we use the covariant open superstring description,

which is especially useful in classifying the 1/2-BPS D-branes. It has been developed in [17]

for the flat spacetime background, and successfully applied to some important backgrounds

in superstring theory [18–23]. To carry out such classification, we need the Type IIA

superstring action in the AdS4 × CP3 background, which has been constructed by using

the super coset structure [24–27]. However, the action is the one where the κ-symmetry is
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partially fixed, and might be inadequate in describing all possible motions of the string as

already pointed out in [24]. The fully κ-symmetric complete action has been constructed

in [28], which we take in this paper.

In the next section, we consider the Wess-Zumino (WZ) term of the complete super-

string action in the AdS4 × CP3 background, which is the ingredient for the covariant

open string description of 1/2-BPS D-branes, and set our notation and convention. In

section 3, we investigate the suitable boundary conditions for open string in a way to keep

the κ-symmetry and classify the 1/2-BPS D-branes. The discussion with some comments

follows in section 4.

2 Wess-Zumino term

The original formulation for the covariant description of D-branes [17] considers an arbi-

trary variation of the open superstring action and looks for suitable open string boundary

conditions to make the action invariant. However, it has been pointed out in [18] that the

κ-symmetry is enough at least for the description of supersymmetric D-branes. The basic

reason is that the κ-symmetry is crucial for matching the dynamical degrees of freedom for

bosons and fermions on the string worldsheet and hence ensuring the object described by

the open string supersymmetric.

The κ-symmetry transformation rules in superspace are1

δκZ
MEAM = 0 , δκZ

MEM =
1

2
(1 + Γ)κ , (2.1)

where ZM = (Xµ,Θ) is the supercoordinate, EAM (EM ) is the vector (spinor) superfield,2

κ is the 32 component κ-symmetry transformation parameter, and Γ is basically the pull-

back of the antisymmetric product of two Dirac gamma matrices onto the string worldsheet

with the properties, Γ2 = 1 and TrΓ = 0, whose detailed expression is not needed here. By

construction, the bulk part of the superstring action is invariant under this κ-symmetry

transformation. In the case of open superstring, however, we have non-vanishing contribu-

tions from the worldsheet boundary, the boundary contributions, under the κ-symmetry

variation. Interestingly, as noted in [18], the kinetic part of the superstring action does

not give any boundary contribution due to the first equation of (2.1). Thus, only the WZ

term rather than the full superstring action is of our concern in considering the boundary

contributions.

1The notation and convention for indices are as follows. The spinor index for the fermionic object is

that of Majorana spinor having 32 real components and suppressed as long as there is no confusion. µ is

the ten-dimensional curved space-time vector index. As for the Lorentz frame or the tangent space, the

vector index is denoted by

A = (a, a′) , a = 0, 1, 2, 3 , a′ = 1′, . . . , 6′ ,

where a (a′) corresponds to the tangent space of AdS4 (CP3), and the metric ηAB follows the most plus

sign convention as ηAB = diag(−,+,+, . . . ,+).
2In the present case, EAM and EM are of course the superfields for the AdS4 × CP3 background whose

explicit expressions have been derived in [28].
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The WZ term has an expansion in terms of the fermionic coordinate Θ up to the order

of Θ32. Here, we will consider the expansion up to quartic order. From the complete Type

IIA superstring action in the AdS4 ×CP3 background [28], we see that the expansion of

the WZ term has the following form.

SWZ = S(2) + S(4) +O(Θ6) , (2.2)

where S(2) and S(4) represent the quadratic and quartic part respectively.

The quadratic part is read off as3

S(2) =
R

k

∫
Σ

[
ieA ∧ΘΓAΓ11DΘ− 1

R
eb ∧ ea

(
χγabγ

7χ
)

− 1

R
eb

′ ∧ ea′(Θγa′b′γ7χ)− 2

R
ea

′ ∧ ea(θγaγa′γ5γ7χ)

]
, (2.3)

where Σ is the open string worldsheet. The AdS4 × CP3 background is obtained by the

dimensional reduction of the eleven dimensional AdS4×S7/Zk background. This gives the

origin of the appearance of k in the action. R is the radius of S7 in the eleven dimensional

Planck unit and has the relation with the CP3 radius, RCP3 in string unit, as R2
CP3 =

R3/k = 4π
√

2N/k. The radius of AdS4 is half of RCP3 . The ten dimensional gamma

matrices ΓA are represented through the tensor product of four and six dimensional gamma

matrices as

Γa = γa ⊗ 1 , Γa
′

= γ5 ⊗ γa′ , Γ11 = γ5 ⊗ γ7 , (2.4)

where Γ11 measures the ten dimensional chirality and

γ5 = iγ0γ1γ2γ3 , γ7 = iγ1′γ2′ . . . γ6′ . (2.5)

The ten dimensional Weyl spinor Θ with 32 real components can be split into two parts in

a way to respect the supersymmetry structure of the AdS4 ×CP3 background as

θ = P6Θ , χ = P2Θ , (2.6)

where P6 and P2 are the projectors defined by

P6 =
1

8
(6− J) , P2 =

1

8
(2 + J) , P6 + P2 = 1 , (2.7)

and J is a quantity depending on the Kähler form 1
2Ja′b′e

a′ ∧ eb′ on CP3,

J = −iJa′b′γa
′b′γ7 . (2.8)

Because J satisfies J2 = 4J + 12 and hence has six eigenvalues −2 and two eigenvalues 6,

θ (χ) has 24 (8) independent components after taking into account the spinorial structure

3In the practical calculation, we utilize the expressions of superfields given in [29], a subsequent paper

after [28]. We mostly follow the notation and convention of [28, 29]. As an exception, we use χ rather than

υ to represent spinor components corresponding to the eight broken supersymmetries of the AdS4 ×CP3

background.
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in the AdS4 subspace. The spinor χ corresponds to the eight supersymmetries broken by

the AdS4 ×CP3 background.

The covariant derivative for Θ in (2.3) is defined as

DΘ = (D24θ,D8χ) , (2.9)

where

D24θ = P6

(
d+

i

R
eaγ5γa +

i

R
ea

′
γa′ −

1

4
ωabγab −

1

4
ωa

′b′γa′b′

)
θ

D8χ = P2

(
d+

i

R
eaγ5γa −

1

4
ωabγab − 2iAγ7

)
χ (2.10)

We would like to note that D24 and D8 can be written as

D24 = P6DP6 , D8 = P2DP2 , (2.11)

where

D = d+
i

R
eaγ5γa +

i

R
ea

′
γa′ −

1

4
ωabγab −

1

4
ωa

′b′γa′b′ . (2.12)

From this, we see that the Ramond-Ramond one-form gauge potential A in (2.10) has the

following expression

A =
1

8
Ja′b′ω

a′b′ (2.13)

through an identity P2γa′b′P2 = i
6Ja′b′P2Jγ

7P2 = iJa′b′P2γ
7P2.4

If we now move on to the quartic part S(4) in the expansion of the WZ term (2.2), it

is read off as

S(4) =
R

2k

∫
Σ

{
(χγa

′
γ5θ)(DΘ ∧ γa′γ7DΘ)

− (ΘγaDΘ) ∧ (Θγaγ
5γ7DΘ)−

(
θγa

′
γ5D24θ + 2χγa

′
γ5D24θ

)
∧ (Θγa′γ

7DΘ)

+
i

R
ea ∧

[
− 2(χγ5χ)(Θγaγ

5γ7DΘ)−2(χγbγ7χ)(ΘγabDΘ)+2(χγaγ
5χ)(ΘΓ11DΘ)

− 4(D24θγaγa′γ
5γ7χ)(χγa

′
γ5θ) +

(
θγbD24θ + 2χγbD8χ

)
(χγabγ

7χ)

+ 2
(
θγa

′
γ5D24θ + 2χγa

′
γ5D24θ

)
(θγaγa′γ

5γ7χ)

]
+

i

R
ea

′ ∧
[
− 2(χγ5χ)(Θγa′γ

7DΘ)+2(χγaγ7χ)(Θγaγa′γ
5DΘ)+2(θγa′χ)(ΘΓ11DΘ)

− 4(DΘγa′b′γ
7χ)(χγb

′
γ5θ) + 2

(
θγb

′
γ5D24θ + 2χγb

′
γ5D24θ

)
(Θγa′b′γ

7χ)

− (θγaD24θ + 2χγaD8χ) (θγaγa′γ
5γ7χ)− 1

2
(θγabγ5D24θ)(θγabγa′γ

7χ)

]
+
i

6
ea ∧

(
θγaγ

5γ7M2D24θ −D24θγaγ
5γ7M2θ + χγaγ

5γ7W2D8χ
)

+
i

6
ea

′ ∧
(
Θγa′γ

7M2D24θ −DΘγa′γ
7M2θ + θγa′γ

7W2D8χ
)

+ . . .

}
, (2.14)

4See eq. (C.31) in [28].
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where M2 and W2 are defined as

R(M2)αα
′
ββ′ = 4θαβ′(θα

′
γ5)β − 4δα

′
β′ θασ

′
(θγ5)βσ′

− 2(γ5γaθ)αα
′
(θγa)ββ′ − (γabθ)αα

′
(θγabγ

5)ββ′ ,

R(W2)αiβj = −4(γ7χ)αi(χγ7γ5)βj − 2(γ5γaχ)αi(χγa)βj − (γabχ)αi(χγabγ
5)βj . (2.15)

The dots in the last line denote the terms which lead to the boundary contributions of

higher order in Θ (Θ5 order) under the κ symmetry transformation and hence should be

considered together with the transformation of sextic oder part of the WZ term.

3 Covariant description of 1/2-BPS D-branes

In this section, we take the κ-symmetry variation of the WZ term considered in the previous

section and obtain the boundary contributions. We then investigate the suitable open string

boundary conditions which make the boundary contributions vanish and hence guarantee

the κ-symmetry, the boundary κ-symmetry. The resulting open string boundary conditions

give the covariant description of 1/2-BPS D-branes.

In taking the κ-symmetry variation, it is convenient to express the variation of Xµ in

terms of δκΘ by using the first equation of (2.1) as

δκX
µ = −iΘΓµδκΘ +O(Θ3) , (3.1)

where we retain the variations up to the quadratic order in Θ because we are interested in

the κ-symmetry variation of the WZ term up to the quartic order in Θ. By exploiting this,

we first consider the boundary contributions from the κ-symmetry variation of quadratic

part independent of the spin connection, which are as follows:

δκS
(2) −→ i

R

k

∫
∂Σ

[
− eAΘΓAΓ11δκΘ− i(ΘΓAδκΘ)(ΘΓAΓ11dΘ)

+
2

R
ea(ΘγbδκΘ)(θγabγ

7θ + 2χγabγ
7χ) +

2

R
ea

′
(Θγb

′
γ5δκΘ)(Θγa′b′γ

7Θ)

+
2

R
ea(Θγa

′
γ5δκΘ)(θγaγa′γ

5γ7χ)− 2

R
ea

′
(ΘγaδκΘ)(θγaγa′γ

5γ7χ)

]
, (3.2)

where ∂Σ represents the boundary of open string worldsheet Σ. For the boundary κ-

symmetry, each term should vanish under a suitable set of open string boundary conditions.

Let us look at the first term. Because

dXµeAµ = 0 (A ∈ D) , (3.3)

where A ∈ D (N) implies that A is a Dirichlet (Neumann) direction, the fermion bilinear

ΘΓAΓ11δκΘ should vanish for A ∈ N . In order to check this at the worldsheet boundary,

we firstly split the ten dimensional Majorana spinor Θ into two Majorana-Weyl spinors Θ1

and Θ2 with opposite ten diemensional chiralities as

Θ = Θ1 + Θ2 , (3.4)
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where we take Γ11Θ1 = Θ1 and Γ11Θ2 = −Θ2. Secondly, we impose the following boundary

condition breaking the background supersymmetry by half

Θ2 = PΘ1 (3.5)

with

P = sΓA1...Ap+1 , (3.6)

where all the indices A1, . . . , Ap+1 are those for Neumann directions, and

s =

{
1 for X0 ∈ N

i for X0 ∈ D
, (3.7)

depending on the boundary condition for the time direction X0. It should be noted that p

must be even because Θ1 and Θ2 have opposite chiralities. Then Θ2ΓAδκΘ2 is evaluated

to be Θ1ΓAδκΘ1 for A ∈ N or −Θ1ΓAδκΘ1 for A ∈ D, which means that

ΘΓAΓ11δκΘ = Θ1ΓAδκΘ1 −Θ2ΓAδκΘ2 = 0 (A ∈ N) ,

ΘΓAδκΘ = Θ1ΓAδκΘ1 + Θ2ΓAδκΘ2 = 0 (A ∈ D) . (3.8)

The first identity of this equation clearly shows that the first term of (3.2) vanishes under

the boundary condition of eq. (3.5). Another consequence of eq. (3.8) is that the second

term of (3.2) becomes zero automatically since ΘΓAΓ11δκΘ = 0 (A ∈ N) also implies

ΘΓAΓ11dΘ = 0 (A ∈ N).

Now we consider the fourth term of (3.2) prior to the third one which requires us some

care. From eqs. (3.3) and (3.8), the vanishing condition for the term is

Θγa′b′γ
7Θ = 0 (a′, b′ ∈ N) . (3.9)

In order to see when this condition is satisfied, it is convenient to introduce two integers n

and n′ to denote the number of Neumann directions in AdS4 and CP3 respectively. Then

we have the relation,

n+ n′ = p+ 1 , (3.10)

and the matrix P of (3.6) for the boundary condition (3.5) is expressed as

P = sΓa1...ana
′
1...a

′
n′ = sγa1...an(γ5)n

′ ⊗ γa
′
1...a

′
n′ . (3.11)

A bit of calculation by using this P shows that the condition (3.9) is satisfied for the

following cases:

(n, n′) = (odd, even) for p = 0 mod 4 ,

(n, n′) = (even, odd) for p = 2 mod 4 ,
(3.12)
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according to which the possible candidates of 1/2-BPS Dp-brane are listed as

p = 0 : (1, 0)

p = 2 : (0, 3) , (2, 1)

p = 4 : (1, 4) , (3, 2)

p = 6 : (2, 5) , (4, 3)

p = 8 : (3, 6) .

(3.13)

The first two terms and the fourth term on the right hand side of eq. (3.2) that we

have considered are written in terms of the Weyl spinor Θ alone. On the other hand, the

third and the last two terms have explicit dependence on χ (θ), the specific part of Θ

corresponding to the (un-)broken supersymmetry of AdS4 ×CP3 background.

As for the third term, the condition making it vanish is

θγabγ
7θ = 0 , χγabγ

7χ = 0 (a, b ∈ N) (3.14)

due to eqs. (3.3) and (3.8). It is not difficult to check that these conditions are satisfied for

the cases of (3.12) if we split θ and χ as (3.4) and if we can apply the boundary conditions

θ2 = Pθ1, χ2 = Pχ1 (3.15)

similar to (3.5). However, the condition (3.15) is incompatible with (3.5). If we recall

the definitions of θ and χ given in eq. (2.6), we see that these boundary conditions (3.15)

assume implicitly the commutativity of P with P6 and P2, or more basically [P, J ] = 0

from eq. (2.7). This assumption is too naive because [P, J ] 6= 0 generically. In fact, if P6

(P2) acts on the boundary condition (3.5) and the definition of θ (χ) of eq. (2.6) is used,

the correct boundary condition for θ (χ) turns out to be

θ2 = Pθ1 +
1

8
[P, J ]Θ1 ,

χ2 = Pχ1 − 1

8
[P, J ]Θ1 . (3.16)

As one may guess, the conditions of (3.14) are not satisfied under these boundary condi-

tions due to Θ1 dependent terms which do not vanish by themselves. We may introduce

additional suitable boundary condition for Θ1 to get desired situation. However, this leads

to lower supersymmetry. Since we are focusing on the 1/2-BPS D-branes, we are not trying

to consider such additional boundary condition. Instead we explore the cases in which P

commutes with J .

The matrix J depends on the Kähler form 1
2Ja′b′e

a′ ∧ eb′ on CP3 as one can see from

eq. (2.8). It is convenient to choose a local frame such that the tangent space components

Ja′b′ take the canonical form [30]

Ja′b′ =

ε 0 0

0 ε 0

0 0 ε

 , ε =

(
0 1

−1 0

)
. (3.17)
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Since three two dimensional subspaces are equivalent in this form, it is enough to consider

one subspace when investigating the commutativity between P with J . For a given two

dimensional subspace, we can now check that [P, γa
′b′γ7] = 0 when

a′, b′ ∈ N orD (n′ = even) ,

a′ ∈ N(D) , b′ ∈ D(N) (n′ = odd) . (3.18)

This implies that [P, J ] = 0 under the following conditions:

1. for even n′, both of two directions in each two dimensional subspace are Neumann

or Dirichlet one.

2. for odd n′, one of two directions in each two dimensional subspace is Neumann one

and another is Dirichlet one. This restricts the value of odd n′ to 3.

These two conditions make the boundary condition for θ (χ) of eq. (3.16) have the same

form with (3.5), and in turn eq. (3.14) is satisfied. They also constrain the configurations

of 1/2-BPS D-branes. Especially, the condition (ii) that specifies n′ = 3 for odd n′ informs

us that the two D-branes in (3.13)

(2, 1) , (2, 5) (3.19)

are not 1/2-BPS and thus should be excluded from the list of 1/2-BPS D-branes. As a

result, we see that the possible configurations of 1/2-BPS D-branes are restricted consid-

erably by the Kähler structure on CP3.

From eqs. (3.3) and (3.8), we see that the last two terms of (3.2) vanish if

θγaγa′γ
5γ7χ = 0 (a, a′ ∈ N) . (3.20)

It is not difficult to check that this is indeed satisfied for the cases of (3.12) and under the

conditions (i) and (ii) of the previous paragraph.

Having investigated the vanishing conditions for the boundary contributions from the

quadratic part independent of the spin connection, we now move on to the boundary

contributions from the κ-symmetry variation of the spin connection dependent terms. They

are obtained as

δκ(S(2) + S(4)) −→ R

4k

∫
∂Σ
ωabµ

{
− 1

2
dXµ(ΘγcδκΘ)(Θγcγabγ

5γ7Θ)

− dXµ(Θγc
′
γ5δκΘ)(Θγc′γabγ

7Θ)

+ eµD(ΘΓDδκΘ)
[
ec(Θγcγabγ

5γ7Θ) + ec
′
(Θγc′γabγ

7Θ)
]

− 1

2
dXµ(ΘγcγabΘ)(Θγcγ

5γ7δκΘ)− dXµ(δκΘγc
′
γ7γabΘ)(χγc′γ

5θ)

+
1

2
dXµ(Θγc

′
γ7γabΘ)(θγc′γ

5δκθ + 2χγc′γ
5δκθ)

− 1

2
dXµ(Θγc

′
γ7δκΘ)(θγc′γ

5γabθ + 2χγc′γ
5γabθ)

}
+ (a→ a′, b→ b′) , (3.21)
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which are cubic order in the fermionic coordinate. After imposing the boundary condition

of (3.5) as we did in previous paragraphs, we see that the constraints of (3.12) and the

conditions (i) and (ii) suffice for showing that majority of terms vanish. However, the

contributions involving ωab with a ∈ N(D), b ∈ D(N) and ωa
′b′ with a′ ∈ N(D), b′ ∈ D(N)

do not vanish. At this point, we would like to note that the spin connection for AdS4 (CP3)

has the schematic structure of ωab ∼ X [adXb] (ωa
′b′ ∼ X [a′dXb′]). This implies that the

non-vanishing contributions vanish if the Dirichlet directions are set to zero. In other

words, a given D-brane in the list of (3.13) except for (2, 1) and (2, 5) is 1/2-BPS if it is

placed at the coordinate origin in its transverse directions.

Finally, we consider the terms in S(4) independent of the spin connection. In this case,

it is enough to take the κ-symmetry variation only for Θ, since as seen from (3.1) δκX
µ

leads to the contributions of higher order in Θ which should be treated with δκS
(6). Then

the boundary contributions from the κ-symmetry variation are read off as

δκS
(4) −→ R

2k

∫
∂Σ

{[
− (ΘγaδκΘ)(Θγaγ

5γ7DΘ) + (ΘγaDΘ)(Θγaγ
5γ7δκΘ)

− (θγa
′
γ5δκθ + 2χγa

′
γ5δκθ)(Θγa′γ

7DΘ)

+ (θγa
′
γ5D24θ+2χγa

′
γ5D24θ)(Θγa′γ

7δκΘ)+2(χγa
′
γ5θ)(δκΘγa′γ

7DΘ)
]∣∣∣
ωAB=0

+
i

R
ea
[
2(χγ5χ)(Θγaγ

5γ7δκΘ)+2(χγbγ7χ)(ΘγabδκΘ)−2(χγaγ
5χ)(Θγ5γ7δκΘ)

+ 4(δκθγaγa′γ
5γ7χ)(χγa

′
γ5θ)− (θγbδκθ + 2χγbδκχ)(χγabγ

7χ)

− 2(θγa
′
γ5δκθ + 2χγa

′
γ5δκθ)(θγaγa′γ

5γ7χ)
]

+
i

R
ea

′
[
2(χγ5χ)(Θγa′γ

7δκΘ)−2(χγaγ7χ)(Θγaγa′γ
5δκΘ)−2(θγa′χ)(Θγ5γ7δκΘ)

+ 4(δκΘγa′b′γ
7χ)(χγb

′
γ5θ)−2(θγb

′
γ5δκθ+2χγb

′
γ5δκθ)(Θγa′b′γ

7χ)

+ (θγaδκθ + 2χγaδκχ)(θγaγa′γ
5γ7χ) +

1

2
(θγabγ5δκθ)(θγabγa′γ

7χ)
]

− i

6
ea
(
θγaγ

5γ7M2δκθ − δκθγaγ5γ7M2θ + χγaγ
5γ7W2δκχ

)
− i

6
ea

′ (
Θγa′γ

7M2δκθ − δκΘγa′γ
7M2θ + θγa′γ

7W2δκχ
)}

. (3.22)

We see that there are lots of boundary contributions. One may wonder if all of them

vanish without any extra condition after imposing the boundary condition (3.5) with the

constraints (3.12) and the conditions (i) and (ii) below (3.18). However, lengthy but

straightforward calculation indeed shows that the above boundary contibutions vanish

without introducing any additional condition.

We have completed the investigation of the open string boundary condition for the

κ-symmetry of the action expanded up to quartic order in Θ. The resulting classification

of 1/2-BPS D-branes is summarized in table 1.
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D0 D2 D4 D6 D8

(n,n′) (1,0) (0,3)
(1,4)

(3,2)
(4,3) (3,6)

Table 1. 1/2-BPS D-branes in the AdS4 × CP3 background. n (n′) represents the number of

Neumann directions in AdS4 (CP3). The Neumann directions in CP3 should follow the conditions

(i) and (ii) below eq. (3.18). Each D-brane is supposed to have no worldvolume flux.

4 Discussion

We have given the covariant open string description of 1/2-BPS D-branes by investigating

the suitable boundary condition which makes the boundary contributions from the κ-

symmetry variation of the WZ term vanish up to the quartic order in Θ. As the main

result, the 1/2-BPS D-branes in the AdS4×CP3 background have been classified as listed

in table 1.

Although we do not have a rigorous proof, we expect that the classification is valid even

at higher orders in Θ. In other words, any extra condition is expected to be unnecessary in

showing the boundary κ-symmetry of the full WZ term. The reasoning behind this is due

to the observation that the constraints of (3.12) for the possible 1/2-BPS D-bane configu-

rations originate solely from the covariant derivative for Θ (2.10) incorporating the effects

of background fields.5 Note that the third term and the fourth term of (3.2) essentially

comes from the variation of the first term of (2.3) involving the covariant derivative. This

means that all the constraints are obtained just from the consideration of quadratic part

S(2) (2.3). Of course, S(2) has the terms independent of the covariant derivative. However,

if we trace the process of checking δκS
(2)|∂Σ = 0, we see that they lead to the vanishing

boundary contributions consistently without requiring any additional constraint and have

the boundary κ-symmetry. As we have checked in the previous section, for the quartic part

S(4), the first non-trivial higher order part, again nontrivial contributions come from the

quartic terms containing the covariant derivative. We expect that this situation continues

to hold even for the higher order of Θ in the expansion of WZ term.

Actually, the above reasoning can be explicitly checked for the analogous open string

descriptions of 1/2-BPS D-branes in some important supersymmetric backgrounds includ-

ing Type IIA/IIB plane waves [18, 19] and AdS5×S5 [20–23] backgrounds. In all these

cases, the quadratic part including the covariant derivative in the WZ term also deter-

mines the full classification of the 1/2-BPS D-branes. In particular, the result for the

AdS5×S5 background has been shown to be valid at full orders in the fermionic coordinate.

That is, except from the quadratic part, we do not have any extra condition from higher

order parts which might give further restriction on the 1/2-BPS D-brane configurations.

For the AdS5×S5 background, the string action can be obtained from the supercoset struc-

ture. Since AdS4×S7 has the similar supercoset structure and the AdS4×CP3 is obtained

as an orbifold of AdS4×S7, we expect to prove the above reasoning explicitly, which will

be an interesting topic to pursue.

5In order to describe 1/2-BPS D-branes, open string end points are placed at the coordinate origin of the

Dirichlet directions. This eliminates the boundary contributions from the spin connection dependent terms.
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One interesting fact about the AdS4 × CP3 background is that it is related to the

Type IIA plane wave background through the Penrose limit [31]. The superstring action in

the Type IIA plane wave background has been constructed in [32–34], and the open string

description has been used to classify the 1/2-BPS D-branes in the background [19]. From

the relation between two coordinate systems for the AdS4 ×CP3 and the Type IIA plane

wave backgrounds, we may compare the classfication data of table 1 with that obtained

in [19]. Then we realize an agreement between them except for D0-brane. We note that,

since non-trivial Kähler structure does not exist in the Type IIA plane wave background,

the conditions below (3.18) due to the Kähler structure on CP3 disappear after taking the

Penrose limit and hence two D-branes in (3.19) excluded from the 1/2-BPS D-branes turn

out to be 1/2-BPS.

As for D0-brane, in contrast to the result in the AdS4 × CP3 background, it is not

supersymmetric in the Type IIA plane wave background. The basic reason is simply the

impossibility of taking a suitable open string boundary condition for D0-brane in a way

of preserving supersymmetry. Given this discrepancy, one might wonder the fate of the

supersymmetric D0-brane in the plane-wave limit. Starting from the usual AdS4 metric

ds2 = − cosh2 ρdt2 + dρ2 + sinh ρ2dΩ2
2 (4.1)

we consider the boosted limit along an angle direction ψ̃ in CP3. Thus we define

x+ =
t+ ψ̃

2
, x− = R̃2 t− ψ̃

2
. (4.2)

Taking R̃→∞ limit with some additional scaling of other coordinates, we obtain the Type

IIA plane-wave metric

ds2 = −4dx+dx− + · · · . (4.3)

The explicit construction was given at [31]. Note that in order to have the finite values

of x−,

t− ψ̃ = o

(
1

R̃2

)
. (4.4)

Thus the possible D0-brane configuration carried over to the plane-wave limit should satisfy

eq. (4.4), which is necessarily nonsupersymmetric in AdS4×CP3. In other words, the plane-

wave limit is the geometry seen by the particle moving fast along the angle direction in

CP3, D0-brane also should be comoving with that particle in order to have a sensible limit

in the plane-wave geometry. We also would like to note that there is similar discrepancy

between D1-branes in the AdS5×S5 and the type IIB plane-wave backgrounds also related

through the Penrose limit [35]. As shown in [20–23], a Lorentzian D1-brane can be 1/2-BPS

only when it is placed in the AdS5 space. However, such D1-brane is not supersymmetric

in the plane wave background and completely different type of configuration [18] appears

to be supersymmetric which is furthermore not half but quarter BPS.

The classification of 1/2-BPS D-branes given in table 1 is ‘primitive’ in a sense that

it gives no more information about 1/2-BPS D-branes. For example, it does not tell us

about which configuration of a given D-brane is really 1/2-BPS and which part of the

– 11 –
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background supersymmetry is preserved on the D-brane worldvolume. We should consider

these questions by using other methods. One possible way would be to take the process

adopted in [36, 37] for studying worldvolume theories on 1/2-BPS D-branes in the AdS5×S5

background. An important point we would like to note here is that it is enough to consider

D-brane configurations based on the classification shown in table 1 . We do not need to

investigate all possible configurations for the study of 1/2-BPS D-branes. Therefore, the

classification provides us a good guideline or starting point for further exploration of the

1/2-BPS D-branes.
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