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We measure absolute optical absorption cross-sections of one- (1D) and two-dimensional (2D)

nanostructures using a focused laser beam while varying the numerical aperture (NA) of the

focusing lens. We find the optical absorption deviates at higher NA. In the high NA regime,

absorption by graphene decreases from 2.2% to below 1.8%; for Ge nanowires, it decreases from

an expected value by a factor of 1.2. We explain this using the depolarization effect at the focal

spot and conclude that these corrections allow for accurate quantitative measurements of optical

and optoelectronic processes in 1D or 2D nanostructures. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4752889]

Absorption of light is a key parameter essential for char-

acterizing the intrinsic efficiency of optical processes in

materials as well as the performance of optical and optoelec-

tronic devices, including photovoltaic cells, photo detectors,

CCD arrays, and lasers.1–7 Recently, building these devices

from nanostructures has attracted wide attention as it makes

possible new functionalities as well as high sensitivity.

Examples include plasmon enhanced light-emitting devices,

optical power limiting devices, optical antennas, and optical

wires.8–11 Accurate measurements of optical absorption in

nanostructures, usually quantified with an optical cross sec-

tion, are critical for the design and optimization of nano-

structure based optoelectronic devices.

There are two experimental approaches for measuring

optical absorption of nanostructures: by using ensemble or

individual measurement. Individual measurements yield

more accurate information by revealing the heterogeneity of

nanostructures. In order to determine the optical properties

of individual structures with sub-micron spatial resolution,

localization of laser excitation at the diffraction limit is often

required, which is typically achieved by using high numeri-

cal aperture (NA) objective lenses. For instance, the use of

two focusing and collecting lenses with matching NA, in

combination with laser scanning optics allows spatially

resolved imaging of light transmission (thus local extinction

or absorption) in the diffraction limit (see Fig. 1(a)). While

such measurements could yield, in principle, the same results

as measurements done with collimated light on macroscopic

samples, these two platforms produce different light fields at

the sample location. In particular, the focusing optics modi-

fies the light polarization at the focal plane from that of the

collimated beam with the degree of modification determined

by the NA, or equivalently the semiaperture angle (SA).

This effect, generally referred to as the depolarization

effect, is important especially for optical and optoelectronic

characterization of nanostructures since their optical proper-

ties are polarization sensitive due to geometric confinement

associated with their nanoscale dimensions. Single-layer gra-

phene, a one-atom-thick film, provides an excellent example

of two-dimensional (2D) nanostructures. Its absorption of

light is strictly limited to light with polarization parallel to

the graphene surface with uniform absorption efficiency

(�2:3%) over broad infrared and visible wavelengths.12 In

contrast, graphene does not absorb light polarized perpendic-

ular to its surface.13 On the other hand, semiconducting

nanowires (NWs) as well as carbon nanotubes (CNTs) are

FIG. 1. Measurement scheme and calculated depolarization effect at the

focal plane. (a) Linearly polarized light (785 nm) is introduced into an oil-

immersion objective lens with an adjustable numerical aperture (upper blue

disk), with the polarization direction shown as a blue arrow. The light trans-

mitted through the substrate which has various nanostructures resting on the

surface is collected by an oil-immersion lens (lower blue disk) with a fixed

numerical aperture (NA¼ 1.4). The initial polarization before the lens is

along the x-direction, and the z-direction is defined as being normal to the

sample. Two representative semiaperture angles are shown here. Focusing

the light with the larger semiaperture angle tilts the polarization, introducing

a measurable z-component. (b) Calculated intensities of the x and z compo-

nents of the electric field incident upon the sample focal plane are shown

for different SAs. All intensities at different SAs are normalized to the

x-component.a)Electronic mail: jp275@cornell.edu.
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expected to show behaviors of one-dimensional (1D) struc-

tures. Light is most strongly absorbed when its polarization

is along the longitudinal (axial) direction of NWs or CNTs,

which is often quantified by the absorption anisotropy ratio,

d ¼ ðQk � Q?Þ=ðQk þ Q?Þ; where Qk (Q?) is the absorption

efficiency for light having longitudinal (perpendicular) polar-

ization. For NWs, the absorption efficiencies are defined as

ratio of the absorption cross-section to the physical cross sec-

tion.14 It is, thus, natural that the light absorption in 1D and

2D nanostructures would be sensitive to the illumination ge-

ometry in addition to their intrinsic optical properties. How-

ever, this effect is often unjustifiably ignored. As we show in

this letter, the depolarization of focused light causes signifi-

cant changes to the measured absorption values, whose effect

is larger for high NA optics. We investigate this effect by

measuring absorption cross-sections of prototypical 1D

(semiconducting NWs) and 2D (graphene) nanostructures

using confocal transmission absorption measurements while

varying the SA of illumination.

In Fig. 1(b), we first discuss the depolarization of a

focused laser at two different SAs. Here, we use a calculation

based on conventional electromagnetic theory, first developed

in 1959 by Richards and Wolf, in order to understand how

polarization changes when a linearly polarized monochromatic

laser beam is focused.15 It clearly shows that a linearly polar-

ized laser beam will produce a polarization component perpen-

dicular to the focal plane. This depolarization effect has

experimentally been seen.16,17 It can also be understood phe-

nomenologically from the vectorial nature of the electromag-

netic field and ray optics.16 Different rays of a light beam have

the same polarization prior to a focusing lens, but the polariza-

tion of each ray would be tilted differently with the outermost

ray having the largest tilt (Fig. 1(a)) and the strongest depolar-

ized field component. For example, the jEzj2 component could

be as large as 20% of jExj2 along the original polarization

direction for a semiaperture angle h ¼ 67�. In nanostructures,

these two polarization components are absorbed differently,

and hence accurate absorption measurements require an appro-

priate correction when a high NA lens is used.

Fig. 1(a) shows our experimental scheme. A linearly

polarized, collimated, CW laser beam (785 nm) was focused

by an oil immersion objective lens with variable NA

(between 0.6 and 1.35; Olympus 100x) to obtain different

SAs from 24� to 67�. Both NW and graphene samples are de-

posited on transparent fused silica substrates, which have

prepatterned alignment marks for locating samples for fur-

ther characterization, e.g., atomic force microscopy (AFM).

Our graphene is grown using chemical vapor deposition

(CVD) methods on copper foils and then transferred onto the

substrate following a wet transfer technique.18 Our NWs are

CVD grown germanium (Ge) NWs sonicated lightly in meth-

anol and deposited onto the substrate.19 The transmitted light

was collected using another oil immersion lens with a larger

collecting SA (73�) at the back of the sample. In order to

produce an absorption mapping, the intensity was recorded

as a function of the focused laser spot position, which was

controlled by custom-built laser scanning optics. A series of

such images, normalized to the total laser power, was taken

with different SAs. We use this to investigate the depolariza-

tion effect in the absorption measurements.

Two representative absorption images for a graphene

sample are shown in Figure 2(a). A uniform background sig-

nal is subtracted from both images. These images are taken

for two different SAs. For a 24� semiaperture angle

(NA¼ 0.6), the (area averaged) absorption of light for gra-

phene is measured 2:1660:07%, close to the well known

2.3%;12,20 however, for 67� (NA¼ 1.35), it is only

1:7660:06%. In both cases, the intensity of focused laser

(approximately 80 kW=cm2) is well below the saturation in-

tensity.21 This behavior is consistent with the depolarization

effect. At a small SA of 24�, the total intensity has little con-

tribution from the normal polarization component (Fig. 1(b)

bottom, jEzj2), while at a large SA of 67�, the normal compo-

nent’s global maximum intensity is almost 20% that of jExj2
(Fig. 1(b) top). As all dipole transitions are constrained

within the p bands of graphene at this wavelength,13 any nor-

mal component of the light will not be absorbed and thus

increases (decreases) the total transmission (absorption) of

light. Therefore, as we increase the semiaperture angle of the

illumination, the jEzj2 component increases, decreasing the

measured absorption. Indeed, our data are fully consistent

FIG. 2. The experimentally measured absorption in graphene depends on

semiaperture illumination angle. (a) Absorption of light at the same area of

the sample for two different semiaperture angles. The absorbance of the sub-

strate was set to zero following uniform background correction. Scale bar, 5

lm. (b) Experimentally measured (black squares) and theoretical curve (red

line) of absorption of graphene as a function of semiaperture angle. The the-

oretical curve takes into account the depolarization effect at the focal plane

obtaining the fitted tangential absorption of light to be 2:2% for graphene.

Inset: Laser beam diameter is smaller than the area of the graphene sheet,

which is assumed in the calculation.
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with this expected behavior (Fig. 2(b)). Furthermore, our

data are in excellent agreement with our theoretical calcula-

tion (solid line in Fig. 2(b)). We obtained our theoretical fit

assuming 2.2% absorption in the tangential polarization

direction and zero absorption in the normal direction.

Our results shown in Fig. 2 clearly demonstrate that gra-

phene’s optical absorption requires correction (as much as

20%) at large semiaperture angle illumination and that the

decrease in the apparent optical absorption is proportional to

the amount of depolarization component (in this case jEzj2).

It also experimentally confirms the magnitude of jEzj2 pre-

dicted by theory, which has never been done before.

In Fig. 3, we explore the depolarization effect in 1D lin-

ear structures. GeNWs are chosen as they are an ideal mate-

rial for this study. First, GeNWs have large absorption cross-

sections as Ge’s direct gap is similar in energy to its indirect

gap, producing a better signal-to-noise ratio in our measure-

ment as compared to other indirect band gap materials (such

as Si). In addition, their polarization anisotropy was shown

to be strongly diameter dependent, increasing from 50% to

98% as the diameter changes from 70 nm to 20 nm.22

Both optical microscopy and AFM are used to locate

and characterize the GeNWs first. An example AFM image

is shown in Fig. 3(a) (upper) for a GeNW with diameter

�65 nm. In Fig. 3(a) (lower), after aligning the light polar-

ization (before focusing) to the NW’s axis, we compare the

absorption of the NW at two different SAs as in graphene

case. The data at 67� show a higher and narrower absorption

peak compared to the case of 24�. This behavior is expected.

As the semiaperture angle increases, the focused spot size

becomes smaller (the Abbe diffraction effect) and allows

more light to be localized around the NWs (Fig. 3(b), inset),

especially when the NW diameter is smaller than the beam

spot. In Fig. 3(b), we plot the peak absorption values (Fig.

3(b)) measured while varying the SAs of illumination. They

monotonically increase for larger SAs closely following the

prediction of the Abbe effect (blue curve). However, at large

SA, the depolarization effect introduces a significant amount

of field with polarization along z direction and thus lowers

the absorption.

In order to obtain the theoretical fits for absorption with

and without the depolarization effect for NWs, we assume

the effective diameter of this NW to be 60 nm after consider-

ing the native oxide of GeNWs.23 The anisotropic ratio, d, is

predicted to be 70% for this diameter.22 We further divide

the focused laser beam spot into two regions. One region is

the overlapping area between the NW and laser spot. In this

region, the field intensity of each polarization is denoted as

Ix
NW , Iy

NW , and Iz
NW with x being along the longitudinal direc-

tion of the NW. Similarly, for the region excluding the over-

lapping region, the intensity of each polarization is denoted

as Ix
E, Iy

E, and Iz
E. The experimentally measured absorption is

expressed as ðQk;Q?;Q?Þ � ðIx
NW ; I

y
NW ; I

z
NWÞ=Itotal; where

Itotal ¼ ðIx
NW þ Iy

NW þ Iz
NWÞ þ ðIx

E þ Iy
E þ Iz

EÞ and Qk and Q?
are defined previously as the absorption efficiency for differ-

ent polarizations. We obtained our theoretical fit assuming

Qk ¼ 85% (red curve). This value is consistent with respect

to the cylindrical NW geometry calculation combined with

the previously measured absorption efficiency for the

assumed diameter.19,22

In conclusion, we demonstrate that the depolarization

effect strongly modifies the optical absorption of one- and

two-dimensional nanostructures when high NA lenses are

used to illuminate the nanostructures. Depending on the

dimensionality of nanostructures, different corrections are

required. For quantitative optical studies of individual nano-

structures using high NA objective lens, these corrections

become increasingly important. Furthermore, the variable

semiaperture angle measurement presented here is not only

limited to the examples mentioned above but also could be

useful for understanding the optical coupling in nanostruc-

tures under different polarization field configurations.

We thank M. Wojcik for providing the graphene sam-

ples. This work was supported by NSF CAREER Grant

FIG. 3. Dependence of measured absorption versus illumination semiaper-

ture angle in Ge nanowires. (a) Upper: AFM image of a representative

Ge nanowire (d � 65 nm). Scale bar, 1 lm. Lower: Measured absorption of

light of the same nanowire for two different semiaperture angles. Scale bar,

0.5 lm. (b) Experimentally measured (black squares) and calculated (blue

and red curves) absorption for various semiaperture angles of illumination.

The blue curve considers only the Abbe diffraction effect in the absence of

depolarization. The red curve, however, includes the depolarization effects.

Both calculations for this nanowire use Qk ¼ 85% in the portion of the

nanowire being illuminated. The latter uses d ¼ 70%. Inset: Schematic illus-

trating that the nanowire diameter is smaller than the beam diameter.

Smaller semiaperture angles lead to larger laser spot diameters (left) and

vice versa (right), with the z component (shaded area) only being significant

in the latter.
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