Open Access System for Information Sharing

Login Library

 

Article
Cited 17 time in webofscience Cited 19 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorLiu, Jiaquan-
dc.contributor.authorRYNAGGEUN, LEE-
dc.contributor.authorBritton, Brooke M.-
dc.contributor.authorLondon, James A.-
dc.contributor.authorYang, KEUNSANG-
dc.contributor.authorHanne, Jeungphill-
dc.contributor.authorLEE, JONG-BONG-
dc.contributor.authorRichard Fishel-
dc.date.accessioned2019-12-11T08:50:07Z-
dc.date.available2019-12-11T08:50:07Z-
dc.date.created2019-12-03-
dc.date.issued2019-11-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/100497-
dc.description.abstractA shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL-EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL-EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH-GATC incisions.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.titleMutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-019-13191-5-
dc.type.rimsART-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, v.10, no.1-
dc.identifier.wosid000498169700001-
dc.citation.number1-
dc.citation.titleNATURE COMMUNICATIONS-
dc.citation.volume10-
dc.contributor.affiliatedAuthorRYNAGGEUN, LEE-
dc.contributor.affiliatedAuthorYang, KEUNSANG-
dc.contributor.affiliatedAuthorLEE, JONG-BONG-
dc.identifier.scopusid2-s2.0-85075522267-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusDNA HELICASE II-
dc.subject.keywordPlusGENE-PRODUCT-
dc.subject.keywordPlusSTRUCTURAL BASIS-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusRECOGNITION-
dc.subject.keywordPlusACTIVATE-
dc.subject.keywordPlusEXCISION-
dc.subject.keywordPlusREVEALS-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse