Open Access System for Information Sharing

Login Library

 

Conference
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multispectral photoacoustic assessment of thyroid cancer nodules in vivo

Title
Multispectral photoacoustic assessment of thyroid cancer nodules in vivo
Authors
KIM, CHULHONG
Date Issued
2020-02-17
Publisher
SPIE
Abstract
Thyroid cancer is one of the most commonly diagnosed cancers in the world. Ultrasonography and fine-needle aspiration biopsy are the typical standard-of-care method for diagnosing thyroid nodules. However, about 20% of fine-needle aspiration biopsies generate undeterminable results, which can lead to overdiagnosis and overtreatment. In this study, we propose photoacoustic imaging as an additional triaging tool for identifying cancerous nodules in vivo. We enrolled and photoacoustically imaged 28 patients (19 malignant and 9 benign) who have thyroid nodules. To perform multispectral analysis, we used a series of 5 different wavelengths (i.e., 700, 756, 796, 866, and 900 nm), which were selected based on the optical absorption property of oxy-and deoxy-hemoglobin. All the raw data were automatically stored for further off-line processing, while the corresponding images were visualized on the clinical ultrasound machine in real-time. By using the multispectral photoacoustic data, we calculated the oxygen saturation values of the nodule areas. The result showed that the oxygen saturation level of malignant nodules was lower than that of benign nodules (p < 0.005), which matched with the well-known property of cancerous nodules. Based on the oxygen saturation value, malignant and benign nodules were differentiable with a sensitivity of 80% and specificity of 89%. The result showed the great potential of multispectral photoacoustic analysis as a novel method to identify malignancy of thyroid nodules in vivo. We also verified the robustness of the result by testing reproducibility and comparing inter-physician interpretation. © 2020 SPIE.
URI
https://oasis.postech.ac.kr/handle/2014.oak/102533
Article Type
Conference
Citation
Photonics West, Conference on Biomedical Optics, 2020-02-17
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김철홍KIM, CHULHONG
Dept of Electrical Enginrg
Read more

Views & Downloads

Browse