Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 44 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorCHOI, SUNGHO-
dc.contributor.authorIl-Doo Kim-
dc.contributor.authorSoojin Park-
dc.contributor.authorChong-Min Wang-
dc.contributor.authorChanhoon Kim-
dc.contributor.authorGyujin Song-
dc.contributor.authorLangli Luo-
dc.contributor.authorJun young Cheong-
dc.contributor.authorSu-Ho Cho-
dc.contributor.authorDohyung Kwon-
dc.contributor.authorJi-Won Jung-
dc.date.accessioned2020-10-06T04:50:04Z-
dc.date.available2020-10-06T04:50:04Z-
dc.date.created2020-08-20-
dc.date.issued2018-08-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/104250-
dc.description.abstractNanowires (NWs) synthesized via chemical vapor deposition (CVD) have demonstrated significant improvement in lithium storage performance along with their outstanding accommodation of large volume changes during the charge/discharge process. Nevertheless, NW electrodes have been confined to the research level due to the lack of scalability and severe side reactions by their high surface area. Here, we present nanoporous Ge nanofibers (NPGeNFs) having moderate nanoporosity via a combination of simple electrospinning and a low-energetic zincothermic reduction reaction. In contrast with the CVD-assisted NW growth, our method provides high tunability of macro/microscopic morphologies such as a porosity, length, and diameter of the nanoscale 1D structures. Significantly, the customized NPGeNFs showed a highly suppressed volume expansion of less than 15% (for electrodes) after full lithation and excellent durability with high lithium storage performance over 500 cycles. Our approach offers effective 1D nanostructuring with highly customized geometries and can be extended to other applications including optoelectronics, catalysis, and energy conversion.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfACS Nano-
dc.titleStress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.8b03278-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Nano, v.12, no.8, pp.8169 - 8176-
dc.identifier.wosid000443525600067-
dc.citation.endPage8176-
dc.citation.number8-
dc.citation.startPage8169-
dc.citation.titleACS Nano-
dc.citation.volume12-
dc.contributor.affiliatedAuthorCHOI, SUNGHO-
dc.identifier.scopusid2-s2.0-85052301317-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-CAPACITY LITHIUM-
dc.subject.keywordPlusION BATTERY ANODE-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusGE NANOWIRES-
dc.subject.keywordPlusSCALABLE SYNTHESIS-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusDELITHIATION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthorgermanium anodes-
dc.subject.keywordAuthor1D nanostructures-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthormetallothermic reduction reaction-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthorin situ TEM characterization-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse