Open Access System for Information Sharing

Login Library

 

Article
Cited 98 time in webofscience Cited 103 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorCHOI, SUNGHO-
dc.contributor.authorBin Wang-
dc.contributor.authorJaegeon Ryu-
dc.contributor.authorGyujin Song-
dc.contributor.authorDongki Hong-
dc.contributor.authorChihyun Hwang-
dc.contributor.authorXiong Chen-
dc.contributor.authorBo Wang-
dc.contributor.authorWei Li-
dc.contributor.authorHyun-Kon Song-
dc.contributor.authorSoojin Park-
dc.contributor.authorRodney S. Ruoff-
dc.date.accessioned2020-10-06T04:50:15Z-
dc.date.available2020-10-06T04:50:15Z-
dc.date.created2020-08-20-
dc.date.issued2018-02-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/104251-
dc.description.abstractWe show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene composite electrode, such as made by filtering graphene oxide to create a thin film and reducing it such as through chemical or thermal methods, has sluggish reaction kinetics. Instead, we have made and tested a thin composite film electrode that was folded several times using a water-assisted method; it provides a continuous electron transport path in the fold regions and introduces more channels between the folded layers, which significantly enhances the electron/ion transport kinetics. A fold electrode consisting of SnO2/graphene with high areal loading of 5 mg cm(-2) has a high areal capacity of 4.15 mAh cm(-2), well above commercial graphite anodes (2.50-3.50 mAh cm(-2)), while the thickness is maintained as low as 20 pm. The fold electrode shows stable cycling over 500 cycles at 1.70 mA cm(-2) and improved rate capability compared to thick electrodes with the same mass loading but without folds. A electrode coupled with LiCoO2 cathode was assembled and delivered an areal capacity of 2.84 mAh cm(-2) after 300 cycles. This folding strategy can be extended to other electrode materials and rechargeable batteries.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfACS Nano-
dc.titleFolding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.7b08489-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Nano, v.12, no.2, pp.1739 - 1746-
dc.identifier.wosid000426615600085-
dc.citation.endPage1746-
dc.citation.number2-
dc.citation.startPage1739-
dc.citation.titleACS Nano-
dc.citation.volume12-
dc.contributor.affiliatedAuthorCHOI, SUNGHO-
dc.identifier.scopusid2-s2.0-85042692621-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusFREE ANODE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusPAPER-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusAEROGELS-
dc.subject.keywordAuthorfolding-
dc.subject.keywordAuthorgraphene composite films-
dc.subject.keywordAuthorhigh mass loading-
dc.subject.keywordAuthorhigh areal capacity-
dc.subject.keywordAuthorlithium-ion batteries-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse