Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJeon, J.-
dc.contributor.authorTan, A.T.L.-
dc.contributor.authorLee, J.-
dc.contributor.authorPark, J.E.-
dc.contributor.authorWon, S.-
dc.contributor.authorKim, S.-
dc.contributor.authorBedewy, M.-
dc.contributor.authorGo, J.-
dc.contributor.authorKim, J.K.-
dc.contributor.authorHart, A.J.-
dc.contributor.authorWie, J.J.-
dc.date.accessioned2021-06-01T04:02:18Z-
dc.date.available2021-06-01T04:02:18Z-
dc.date.created2021-01-12-
dc.date.issued2020-12-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/105393-
dc.description.abstractEvaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features similar to 100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS NANO-
dc.titleHigh-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.0c07268-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS NANO, v.14, no.12, pp.17254 - 17261-
dc.identifier.wosid000603308800086-
dc.citation.endPage17261-
dc.citation.number12-
dc.citation.startPage17254-
dc.citation.titleACS NANO-
dc.citation.volume14-
dc.contributor.affiliatedAuthorKim, J.K.-
dc.identifier.scopusid2-s2.0-85097895222-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusEVAPORATION-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusSTRIPES-
dc.subject.keywordPlusROUTE-
dc.subject.keywordAuthorcapillary force-
dc.subject.keywordAuthormicropatterning-
dc.subject.keywordAuthorsemiconducting polymers-
dc.subject.keywordAuthorP3HT-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthorevaporative assembly-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김진곤KIM, JIN KON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse