Open Access System for Information Sharing

Login Library

 

Article
Cited 177 time in webofscience Cited 183 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLEE, JOONGOO-
dc.contributor.authorJ. C. Park-
dc.contributor.authorJ. U. Bang-
dc.contributor.authorH. Song-
dc.date.accessioned2021-06-11T05:52:04Z-
dc.date.available2021-06-11T05:52:04Z-
dc.date.created2021-03-15-
dc.date.issued2008-09-23-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/106626-
dc.description.abstractNanoreactor frameworks have many advantages over bulk catalyst structures in terms of providing a regular reaction environment and conformational stability. In this work, Au@SiO2 nanoreactor frameworks were chemically modified to improve the catalytic efficiency of o-nitroaniline reduction. The porosity of silica shells was readily controlled by introducing C18TMS as a porogen with heat treatment. The diffusion rate of the silica layers was tuned from 5.9 x 10(-19) to 2.1 x 10(-18) m(2) s(-1), which directly altered the turnover frequency and rate constant of the reaction. Carboxylate functionality was introduced on the gold cores of Au@SiO2 nanoreactors by 3-MPA addition. The reaction rate was enhanced by a maximum of 2.4 times compared to unfunctionalized catalysts through a strong interaction between carboxylate anions and o-nitroaniline. Totally, the rate constant of Au@SiO2 yolk-shell nanoreactors exhibits a 13-fold enhancement by diffusion and surface functionality control. These results indicate that the rational design of a nanoreactor framework with appropriate chemical functionalization can maximize the catalytic efficiency of various solution-phase reactions.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfCHEMISTRY OF MATERIALS-
dc.titlePrecise tuning of porosity and surface functionality in Au@SiO2 nanoreactors for high catalytic efficiency.-
dc.typeArticle-
dc.identifier.doi10.1021/cm801149w-
dc.type.rimsART-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.20, no.18, pp.5839 - 5844-
dc.identifier.wosid000259275000016-
dc.citation.endPage5844-
dc.citation.number18-
dc.citation.startPage5839-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume20-
dc.contributor.affiliatedAuthorLEE, JOONGOO-
dc.identifier.scopusid2-s2.0-53549104148-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusSILICA-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusREDUCTION-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse