Open Access System for Information Sharing

Login Library

 

Article
Cited 150 time in webofscience Cited 151 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJalili, Helia-
dc.contributor.authorHAN, JEONG WOO-
dc.contributor.authorKuru, Yener-
dc.contributor.authorCai, Zhuhua-
dc.contributor.authorYildiz, Bilge-
dc.date.accessioned2021-11-20T11:50:31Z-
dc.date.available2021-11-20T11:50:31Z-
dc.date.created2021-11-19-
dc.date.issued2011-04-07-
dc.identifier.issn1948-7185-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107520-
dc.description.abstractEffects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition-metal oxides. Here we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from X-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based simulations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile-strained LSM surface. At 500 degrees C in 10(-3) mbar oxygen, both LSM film surfaces exhibit a metallic-like tunneling conductance, with a higher density of electronic states near the Fermi level on the tensile-strained LSM surface, contrary to the behavior at room temperature. Our findings illustrate the potential role and mechanism of lattice strain in tuning the reactivity of perovskite transition-metal oxides with oxygen in solid oxide fuel cell cathodes.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfJournal of Physical Chemistry Letters-
dc.titleNew Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3-
dc.typeArticle-
dc.identifier.doi10.1021/jz200160b-
dc.type.rimsART-
dc.identifier.bibliographicCitationJournal of Physical Chemistry Letters, v.2, no.7, pp.801 - 807-
dc.identifier.wosid000289341600019-
dc.citation.endPage807-
dc.citation.number7-
dc.citation.startPage801-
dc.citation.titleJournal of Physical Chemistry Letters-
dc.citation.volume2-
dc.contributor.affiliatedAuthorHAN, JEONG WOO-
dc.identifier.scopusid2-s2.0-79953797462-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANISTIC ANALYSIS-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusSEGREGATION-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusEXCHANGE-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusXPS-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한정우HAN, JEONG WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse