Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, Kyeounghak-
dc.contributor.authorLee, Wonyoung-
dc.contributor.authorHAN, JEONG WOO-
dc.date.accessioned2021-11-20T13:50:24Z-
dc.date.available2021-11-20T13:50:24Z-
dc.date.created2021-11-19-
dc.date.issued2016-01-
dc.identifier.issn1947-2935-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/107550-
dc.description.abstractThe recently reported oxygen incorporation enhancement near the grain boundary (GB) of yttria-stabilized zirconia (YSZ) provided a potential to enable the low temperature solid oxide fuel cell. However, these empirical observations have not yet explained the detailed reaction mechanism. Here, we performed first-principles calculations to quantitatively access the mechanism that may govern the fast oxygen incorporation at the GB. We investigated the key elementary steps of oxygen incorporation onto both Sigma 5 (310)/[001] GB and (001) surfaces of YSZ at the atomic scale; yttrium dopant segregation, vacancy formation, and oxygen adsorption. Our results showed that the doped yttrium preferentially segregates toward the GB, inducing the easier formation of oxygen vacancy between the yttrium pair at the GB. After these steps, oxygen is favorably adsorbed near the oxygen vacancy accumulated at the GB, eventually incorporating into the vacancy site. On the basis of our results, we suggest the fast oxygen incorporation mechanism near the GB of YSZ, providing fundamental insight of oxygen surface kinetics at the interfaces of defected oxide materials.-
dc.languageEnglish-
dc.publisherAmerican Scientific Publishers-
dc.relation.isPartOfScience of Advanced Materials-
dc.titleFirst-Principles Study of Enhanced Oxygen Incorporation Near the Grain Boundary on Yttria-Stabilized Zirconia-
dc.typeArticle-
dc.identifier.doi10.1166/sam.2016.2628-
dc.type.rimsART-
dc.identifier.bibliographicCitationScience of Advanced Materials, v.8, no.1, pp.196 - 200-
dc.identifier.wosid000372477600037-
dc.citation.endPage200-
dc.citation.number1-
dc.citation.startPage196-
dc.citation.titleScience of Advanced Materials-
dc.citation.volume8-
dc.contributor.affiliatedAuthorHAN, JEONG WOO-
dc.identifier.scopusid2-s2.0-84964792047-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusOXIDE FUEL-CELLS-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusSURFACE EXCHANGE-
dc.subject.keywordPlusCUBIC-ZIRCONIA-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusYSZ-
dc.subject.keywordPlusSEGREGATION-
dc.subject.keywordPlusPEROVSKITES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusSOFC-
dc.subject.keywordAuthorSolid Oxide Fuel Cells-
dc.subject.keywordAuthorYttria-Stabilized Zirconia-
dc.subject.keywordAuthorOxygen Incorporation-
dc.subject.keywordAuthorGrain Boundary-
dc.subject.keywordAuthorDensity Functional Theory-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

한정우HAN, JEONG WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse