Open Access System for Information Sharing

Login Library

 

Article
Cited 15 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, Dong Kyu-
dc.contributor.authorPark, Yunkyu-
dc.contributor.authorSim, Hyeji-
dc.contributor.authorPark, Jinheon-
dc.contributor.authorKim, Younghak-
dc.contributor.authorKim, Gi-Yeop-
dc.contributor.authorEom, Chang-Beom-
dc.contributor.authorChoi, Si-Young-
dc.contributor.authorSon, Junwoo-
dc.date.accessioned2022-01-10T05:50:03Z-
dc.date.available2022-01-10T05:50:03Z-
dc.date.created2021-10-10-
dc.date.issued2021-08-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/109124-
dc.description.abstractUnrestricted integration of single-crystal oxide films on arbitrary substrates has been of great interest to exploit emerging phenomena from transition metal oxides for practical applications. Here, we demonstrate the release and transfer of a freestanding single-crystalline rutile oxide nanomembranes to serve as an epitaxial template for heterogeneous integration of correlated oxides on dissimilar substrates. By selective oxidation and dissolution of sacrificial VO2 buffer layers from TiO2/VO2/TiO2 by H2O2, millimeter-size TiO2 single-crystalline layers are integrated on silicon without any deterioration. After subsequent VO2 epitaxial growth on the transferred TiO2 nanomembranes, we create artificial single-crystalline oxide/Si heterostructures with excellent sharpness of metal-insulator transition (Delta rho/rho > 10(3)) even in ultrathin (<10 nm) VO2 films that are not achievable via direct growth on Si. This discovery offers a synthetic strategy to release the new single-crystalline oxide nanomembranes and an integration scheme to exploit emergent functionality from epitaxial oxide heterostructures in mature silicon devices.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature Communications-
dc.titleHeterogeneous integration of single-crystalline rutile nanomembranes with steep phase transition on silicon substrates-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-021-24740-2-
dc.type.rimsART-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.identifier.wosid000686713800018-
dc.citation.number1-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.contributor.affiliatedAuthorLee, Dong Kyu-
dc.contributor.affiliatedAuthorPark, Yunkyu-
dc.contributor.affiliatedAuthorSim, Hyeji-
dc.contributor.affiliatedAuthorPark, Jinheon-
dc.contributor.affiliatedAuthorKim, Younghak-
dc.contributor.affiliatedAuthorKim, Gi-Yeop-
dc.contributor.affiliatedAuthorChoi, Si-Young-
dc.contributor.affiliatedAuthorSon, Junwoo-
dc.identifier.scopusid2-s2.0-85113242116-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusMETAL-INSULATOR-TRANSITION-
dc.subject.keywordPlusVO2 THIN-FILMS-
dc.subject.keywordPlusULTRATHIN FILMS-
dc.subject.keywordPlusNOBEL LECTURE-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

손준우SON, JUNWOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse