Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorBalaji, Vikram-
dc.contributor.authorKumar, Sunil-
dc.contributor.authorKrishnaswamy, Hariharan-
dc.contributor.authorDigavalli, Ravi Kumar-
dc.contributor.authorLee, Myoung Gyu-
dc.contributor.authorBarlat, Frederic-
dc.date.accessioned2022-04-21T02:51:12Z-
dc.date.available2022-04-21T02:51:12Z-
dc.date.created2022-04-19-
dc.date.issued2022-06-
dc.identifier.issn1073-5623-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/112470-
dc.description.abstractThe constitutive behavior of metallic materials in terms of dislocation kinetics can be successfully described using a dislocation density-based model. Although the kinetics of thermally activated plastic deformation is well described by such models, the number of material constants associated with the model leads to non-unique solution set. In the present work, transient stress relaxation test is used to identify rate-dependent material parameters. The stress relaxation test, when used in conjunction with stress-strain curve can reduce the uncertainty associated with parameter identification. The proposed methodology is demonstrated using aluminum alloys subjected to severe plastic deformation processes such as cryorolling and constrained groove pressing. Kocks-Mecking-Estrin (KME) dislocation density model is implemented as a user subroutine in commercial finite element analysis software. The parameter identification procedure is validated by comparing the experimental results of monotonic tensile and limiting dome height tests. Using dislocation density model, it is shown that unlike the general understanding, the limiting strain is not related to the strain hardening exponent. The limiting strain correlates only with the extent of dynamic recovery, a component of strain hardening.-
dc.languageEnglish-
dc.publisherASM International-
dc.relation.isPartOfMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science-
dc.titleTransient Stress Relaxation Test to Identify Material Constants in Dislocation Density Model-
dc.typeArticle-
dc.identifier.doi10.1007/s11661-022-06624-2-
dc.type.rimsART-
dc.identifier.bibliographicCitationMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v.53, no.6, pp.1969 - 1990-
dc.identifier.wosid000762146500001-
dc.citation.endPage1990-
dc.citation.number6-
dc.citation.startPage1969-
dc.citation.titleMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science-
dc.citation.volume53-
dc.contributor.affiliatedAuthorBarlat, Frederic-
dc.identifier.scopusid2-s2.0-85125380457-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRAIN-RATE SENSITIVITY-
dc.subject.keywordPlusSEVERE PLASTIC-DEFORMATION-
dc.subject.keywordPlusGRAINED AL-ALLOYS-
dc.subject.keywordPlusACTIVATION VOLUME-
dc.subject.keywordPlusMICROSTRUCTURAL EVOLUTION-
dc.subject.keywordPlusMECHANICAL-BEHAVIOR-
dc.subject.keywordPlusHARDENING BEHAVIOR-
dc.subject.keywordPlusCONSTITUTIVE MODEL-
dc.subject.keywordPlusULTRAFINE GRAIN-
dc.subject.keywordPlusALUMINUM-ALLOYS-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse