Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorOh, Min-Ah-
dc.contributor.authorShin, Chang Il-
dc.contributor.authorKim, Moonjoo-
dc.contributor.authorKim, Jayol-
dc.contributor.authorKang, Chung Mu-
dc.contributor.authorHan, Seok Hee-
dc.contributor.authorSun, Jeong-Yun-
dc.contributor.authorOh, Seung Soo-
dc.contributor.authorKim, Yang-Rae-
dc.contributor.authorChung, Taek Dong-
dc.date.accessioned2022-06-22T02:20:23Z-
dc.date.available2022-06-22T02:20:23Z-
dc.date.created2021-07-21-
dc.date.issued2021-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/112966-
dc.description.abstractIon current rectification (ICR), diodelike behavior in surface-charged nanopores, shows promise in the design of delivery probes for manipulation of neural networks as it can solve diffusive leakages that might be critical in clinical and research applications. However, it has not been achieved because ICR has restrictions in nanosized dimension and low electrolyte concentration, and rectification direction is inappropriate for delivery. Herein, we present a polyelectrolyte gel-filled (PGF) micropipette harnessing inverted ICR as a delivery probe, which quantitatively transports glutamate to stimulate primary cultured neurons with high efficiency while minimizing leakages. Since the gel works as an ensemble of numerous surface-charged nanopores, the current is rectified in the micro-opening and physiological environment. By extending the charge-selective region using the gel, inverted ICR is generated, which drives outward deliveries of major charge carriers. This study will help in exploring new aspects of ICR and broaden its applications for advanced chemical delivery.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.titleInverted Ion Current Rectification-Based Chemical Delivery Probes for Stimulation of Neurons-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c04949-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.13, no.23, pp.26748 - 26758-
dc.identifier.wosid000664289800009-
dc.citation.endPage26758-
dc.citation.number23-
dc.citation.startPage26748-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume13-
dc.contributor.affiliatedAuthorOh, Seung Soo-
dc.identifier.scopusid2-s2.0-85108385855-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSYNAPTIC VESICLES-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusEXOCYTOSIS-
dc.subject.keywordPlusNANOPORE-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusDIODES-
dc.subject.keywordPlusPORES-
dc.subject.keywordAuthorion transport-
dc.subject.keywordAuthorrectification-
dc.subject.keywordAuthorpolyelectrolyte-
dc.subject.keywordAuthoriontronics-
dc.subject.keywordAuthorcharge delivery-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

오승수OH, SEUNG SOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse