Open Access System for Information Sharing

Login Library

 

Article
Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorCHO, HANLYUN-
dc.contributor.authorPark, Jae Man-
dc.contributor.authorKim, Jong Hyun-
dc.contributor.authorLee, Chihun-
dc.contributor.authorPark, Dong Yong-
dc.contributor.authorRho, Junsuk-
dc.contributor.authorPark, Seong Jin-
dc.date.accessioned2022-10-07T02:40:07Z-
dc.date.available2022-10-07T02:40:07Z-
dc.date.created2022-09-05-
dc.date.issued2022-10-
dc.identifier.issn0032-5910-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/113929-
dc.description.abstractHydrophilic micropatterned copper surfaces are manufactured using a powder injection molding (PIM) process. Copper powder and a wax-polymer-based binder system are utilized to prepare a feedstock. The rheological properties of the feedstock are evaluated to design the PIM process. Polymethylmethacrylate (PMMA) sacrificial mold inserts fabricated by photolithography are used to shape the micropatterns. Both PIM and photolithography processes are suitable for high-volume products; therefore, the micropatterned surfaces can be mass-produced. The wettability of the manufactured surfaces is investigated by measuring the apparent contact angle. The apparent contact angle tends to decrease as the absolute value of the difference in effective surface free energy between the wet and dry states increases. When the absolute value of the difference is equal to or exceeds 150 mJ/m2, the surface is fully wetted immediately and exhibits superhydrophilicity. Both high aspect ratio and small gap size are key to achieving superhydrophilicity of the micropatterned surface.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.relation.isPartOfPowder Technology-
dc.titleMass production of superhydrophilic micropatterned copper surfaces using powder injection molding process-
dc.typeArticle-
dc.identifier.doi10.1016/j.powtec.2022.117779-
dc.type.rimsART-
dc.identifier.bibliographicCitationPowder Technology, v.411, pp.117779-
dc.identifier.wosid000867345100002-
dc.citation.startPage117779-
dc.citation.titlePowder Technology-
dc.citation.volume411-
dc.contributor.affiliatedAuthorCHO, HANLYUN-
dc.contributor.affiliatedAuthorPark, Jae Man-
dc.contributor.affiliatedAuthorLee, Chihun-
dc.contributor.affiliatedAuthorRho, Junsuk-
dc.contributor.affiliatedAuthorPark, Seong Jin-
dc.identifier.scopusid2-s2.0-85138446933-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusBOILING HEAT-TRANSFER-
dc.subject.keywordPlusFREE-ENERGY-
dc.subject.keywordPlusMELT RHEOLOGY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusARRAY-
dc.subject.keywordPlusFEEDSTOCK-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorSuperhydrophilic surface-
dc.subject.keywordAuthorCopper powder injection molding-
dc.subject.keywordAuthorMass production-
dc.subject.keywordAuthorWettability-
dc.subject.keywordAuthorContact angle-
dc.subject.keywordAuthorSurface free energy-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박성진PARK, SEONG JIN
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse