Open Access System for Information Sharing

Login Library

 

Article
Cited 65 time in webofscience Cited 81 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorByoungchul Hwang-
dc.contributor.authorChang Gil Lee-
dc.contributor.authorKim, SJ-
dc.date.accessioned2015-06-25T02:45:07Z-
dc.date.available2015-06-25T02:45:07Z-
dc.date.created2012-03-22-
dc.date.issued2011-03-
dc.identifier.issn1073-5623-
dc.identifier.other2015-OAK-0000025079en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11564-
dc.description.abstractHigh-strength low-alloy (HSLA) steels were fabricated by varying thermomechanical processing conditions such as rolling and cooling conditions in the intercritical region, and the low-temperature toughening mechanism was investigated in terms of microstructure and the associated grain boundary characteristics. The steels acceleratedly cooled to relatively higher temperature had lower tensile strength than those acceleratedly cooled to room temperature due to the increased volume fraction of granular bainite or polygonal ferrite (PF) irrespective of rolling in the intercritical region, while the yield strength was dependent on intercritical rolling, and start and finish cooling temperatures, which affected the formation of PF and low-temperature transformation phases. The steel rolled in the intercritical region and cooled to 673 K (400 A degrees C) provided the best combination of high yield strength and excellent low-temperature toughness because of the presence of fine PF and appropriate mixture of various low-temperature transformation phases such as granular bainite, degenerate upper bainite (DUB), lower bainite (LB), and lath martensite (LM). Despite the high yield strength, the improvement of low-temperature toughness could be explained by the reduction of overall effective grain size based on the electron backscattered diffraction (EBSD) analysis data, leading to the decrease in ductile-to-brittle transition temperature (DBTT).-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleLow-Temperature Toughening Mechanism in Thermomechanically Processed High-Strength Low-Alloy Steels-
dc.typeArticle-
dc.contributor.college철강대학원en_US
dc.identifier.doi10.1007/S11661-010-0448-3-
dc.author.googleHwang, Ben_US
dc.author.googleLee, CGen_US
dc.author.googleKim, SJen_US
dc.relation.volume42Aen_US
dc.relation.issue3en_US
dc.relation.startpage717en_US
dc.relation.lastpage728en_US
dc.contributor.id10061636en_US
dc.relation.journalMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCEen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, v.42A, no.3, pp.717 - 728-
dc.identifier.wosid000286834700024-
dc.date.tcdate2019-01-01-
dc.citation.endPage728-
dc.citation.number3-
dc.citation.startPage717-
dc.citation.titleMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.citation.volume42A-
dc.contributor.affiliatedAuthorKim, SJ-
dc.identifier.scopusid2-s2.0-79951511369-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc22-
dc.description.scptc28*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusX70 PIPELINE STEELS-
dc.subject.keywordPlusLATH MARTENSITE-
dc.subject.keywordPlusLINEPIPE STEELS-
dc.subject.keywordPlusHIGH-TOUGHNESS-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusLOW-CARBON-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusFERRITE-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김성준KIM, SUNG JOON
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse