Open Access System for Information Sharing

Login Library

 

Article
Cited 11 time in webofscience Cited 15 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorLemiale, V-
dc.contributor.authorEstrin, Y-
dc.contributor.authorKim, HS-
dc.contributor.authorO'Donnell, R-
dc.date.accessioned2015-06-25T02:45:15Z-
dc.date.available2015-06-25T02:45:15Z-
dc.date.created2011-09-20-
dc.date.issued2011-10-
dc.identifier.issn1073-5623-
dc.identifier.other2015-OAK-0000024224en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11568-
dc.description.abstractGrain refinement by plastic deformation is becoming increasingly popular as a way of producing metals with improved properties, such as higher mechanical strength. Surface treatment techniques in which a metallic substrate is bombarded with metallic particles can generate nanocrystalline layers in the impact zone. Understanding the physical mechanisms underlying this grain refinement is crucial for achieving an improvement of existing experimental processes. In this article, we propose a numerical framework combining finite element (FE) simulations with a dislocation-based material model to predict the evolution of the microstructure under particle impact. A single particle normally impacting on a metallic substrate was simulated at different initial velocities. The simulations were compared with previously reported numerical and experimental data. The results indicate that our model accurately captures the grain refinement in the impact zone for a broad range of velocities. This approach provides valuable information on the formation of nanocrystalline layers in both the substrate and the impacting particle. Its potential applications include processes involving surface treatment by high velocity particles, such as shot peening, surface mechanical attrition treatment, kinetic metallization, cold spray, etc.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherSPRINGER-
dc.relation.isPartOfMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleForming Nanocrystalline Structures in Metal Particle Impact-
dc.typeArticle-
dc.contributor.college신소재공학과en_US
dc.identifier.doi10.1007/S11661-010-0588-5-
dc.author.googleLemiale, Ven_US
dc.author.googleEstrin, Yen_US
dc.author.googleO'Donnell, Ren_US
dc.author.googleKim, HSen_US
dc.relation.volume42Aen_US
dc.relation.issue10en_US
dc.relation.startpage3006en_US
dc.relation.lastpage3012en_US
dc.contributor.id10056225en_US
dc.relation.journalMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCEen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, v.42A, no.10, pp.3006 - 3012-
dc.identifier.wosid000293969900009-
dc.date.tcdate2019-01-01-
dc.citation.endPage3012-
dc.citation.number10-
dc.citation.startPage3006-
dc.citation.titleMETALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE-
dc.citation.volume42A-
dc.contributor.affiliatedAuthorKim, HS-
dc.identifier.scopusid2-s2.0-80053646629-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc4-
dc.description.scptc6*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusCOLD-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusMODEL-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김형섭KIM, HYOUNG SEOP
Ferrous & Eco Materials Technology
Read more

Views & Downloads

Browse