Open Access System for Information Sharing

Login Library

 

Article
Cited 89 time in webofscience Cited 156 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorSubin Lee-
dc.contributor.authorJiseong Im-
dc.contributor.authorYoungdong Yoo-
dc.contributor.authorErik Bitzek-
dc.contributor.authorDaniel Kiener-
dc.contributor.authorGunther Richter-
dc.contributor.authorBongsoo Kim-
dc.contributor.authorOh, SH-
dc.date.accessioned2015-06-25T02:52:30Z-
dc.date.available2015-06-25T02:52:30Z-
dc.date.created2014-03-18-
dc.date.issued2014-01-
dc.identifier.issn2041-1723-
dc.identifier.other2015-OAK-0000029450en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11795-
dc.description.abstractMechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning-detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNature communications-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleReversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM-
dc.typeArticle-
dc.contributor.college신소재공학과en_US
dc.identifier.doi10.1038/NCOMMS4033-
dc.author.googleLee, Sen_US
dc.author.googleIm, Jen_US
dc.author.googleOh, SHen_US
dc.author.googleKim, Ben_US
dc.author.googleRichter, Gen_US
dc.author.googleKiener, Den_US
dc.author.googleBitzek, Een_US
dc.author.googleYoo, Yen_US
dc.contributor.id10608365en_US
dc.relation.journalNature communicationsen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationNature communications, v.5-
dc.identifier.wosid000331083800016-
dc.date.tcdate2019-01-01-
dc.citation.titleNature communications-
dc.citation.volume5-
dc.contributor.affiliatedAuthorOh, SH-
dc.identifier.scopusid2-s2.0-84911374132-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc43-
dc.description.scptc61*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusPLASTIC-DEFORMATION-
dc.subject.keywordPlusAU-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusFCC-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

오상호OH, SANG HO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse