Open Access System for Information Sharing

Login Library

 

Article
Cited 25 time in webofscience Cited 26 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorJo, C-
dc.contributor.authorAn, S-
dc.contributor.authorKim, Y-
dc.contributor.authorShim, J-
dc.contributor.authorYoon, S-
dc.contributor.authorLee, J-
dc.date.accessioned2015-06-25T02:56:05Z-
dc.date.available2015-06-25T02:56:05Z-
dc.date.created2013-02-18-
dc.date.issued2012-01-
dc.identifier.issn1463-9076-
dc.identifier.other2015-OAK-0000026448en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/11907-
dc.description.abstractMesocellular carbon foam (MSU-F-C) is functionalized with hollow nanographite by a simple solution-phase method to enhance the intrapenetrating electrical percolation network. The electrical conductivity of the resulting material, denoted as MSU-F-C-G, is increased by a factor of 20.5 compared with the pristine MSU-F-C. Hollow graphite nanoparticles are well-dispersed in mesocellular carbon foam, as confirmed by transmission electron microscopy (TEM), and the d spacing of the (002) planes is 0.343 nm, which is only slightly larger than that of pure graphite (0.335 nm), suggesting a random combination of graphitic and turbostratic stacking. After nanographitic functionalization, the BET surface area and total pore volume decreased from 928 m(2) g(-1) and 1.5 cm(3) g(-1) to 394 m(2) g(-1) and 0.7 cm(3) g(-1), respectively. Thermogravimetric analysis in air shows that the thermal stability of MSU-F-C-G is improved relative to that of MSU-F-C, and the one-step weight loss indicates that the nanographite is homogeneously functionalized on the MSU-F-C particles. When the resulting mesocellular carbon materials are used as electrode materials for an electric double layer capacitor (EDLC), the specific capacitances (C-sp) of the MSU-F-C and MSU-F-C-G electrodes at 4 mV s(-1) are 109 F g(-1) and 93 F g(-1), respectively. The MSU-F-C-G electrode exhibited a very high area capacitance (C-area, 23.5 mu F cm(-2)) compared with that of the MSU-F-C electrode (11.7 mu F cm(-2)), which is attributed to the enhanced intraparticle conductivity by the nanographitic functionalization. MSU-F-C-G exhibited high capacity retention (52%) at a very high scan rate of 512 mV s(-1), while only a 23% capacity retention at 512 mV s(-1) was observed in the case of the MSU-F-C electrode. When applied as an anode in a lithium ion battery, a significant increase in the initial efficiency (44%), high reversible discharge capacity (580 mA h g(-1)) in the lower voltage region, and a higher rate capability were observed. The high rate capability of the MSU-F-C-G electrode as charge storage was due to the low resistance derived from the nanographitic functionalization.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfPHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleNano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials-
dc.typeArticle-
dc.contributor.college화학공학과en_US
dc.identifier.doi10.1039/C2CP40657H-
dc.author.googleJo, Cen_US
dc.author.googleAn, Sen_US
dc.author.googleLee, Jen_US
dc.author.googleYoon, Sen_US
dc.author.googleShim, Jen_US
dc.author.googleKim, Yen_US
dc.relation.volume14en_US
dc.relation.issue16en_US
dc.relation.startpage5695en_US
dc.relation.lastpage5704en_US
dc.contributor.id10138815en_US
dc.relation.journalPHYSICAL CHEMISTRY CHEMICAL PHYSICSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.14, no.16, pp.5695 - 5704-
dc.identifier.wosid000302062200041-
dc.date.tcdate2019-01-01-
dc.citation.endPage5704-
dc.citation.number16-
dc.citation.startPage5695-
dc.citation.titlePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.volume14-
dc.contributor.affiliatedAuthorLee, J-
dc.identifier.scopusid2-s2.0-84859318073-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc17-
dc.description.scptc16*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusORDERED MESOPOROUS CARBON-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusNANOSTRUCTURED MATERIALS-
dc.subject.keywordPlusMOLECULAR-SIEVES-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusLOW-COST-
dc.subject.keywordPlusSILICA-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이진우LEE, JIN WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse