Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.author오상호-
dc.contributor.authorJeong, Yang-Jin-
dc.contributor.authorNa, Sin-Hye-
dc.contributor.authorKim, Jiman-
dc.contributor.authorLee, Byeong-Joo-
dc.date.accessioned2024-02-21T04:40:07Z-
dc.date.available2024-02-21T04:40:07Z-
dc.date.created2024-01-23-
dc.date.issued2024-01-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/120296-
dc.description.abstractThe manufacturing process of multifilamentary Nb3Sn superconducting wire includes annealing for diffusional growth of the Nb3Sn intermetallic compound layer. During the process, the formation of columnar Nb3Sn grains should be suppressed to maximize the flux pinning effect. However, the detailed mechanism underlying the formation of columnar Nb3Sn grains has not been clarified yet, and is an obstacle to finding optimal process conditions. In the present work, we investigated the fundamental reason for the columnar grain formation, using a novel Monte Carlo Potts model which can simultaneously predict grain growth and interfacial reactions. We found that a decrease in thermodynamic driving force due to insufficient Sn at the interface causes the formation of columnar Nb3Sn grains. Accordingly, columnar grain formation is expected to be suppressed when abundant Sn atoms are supplied rapidly to the reaction front. Based on the fundamental understanding of columnar grain formation, possible ways to suppress columnar grain formation are suggested. We especially focused on the difference in the columnar grain fraction depending on the wire strand type (bronze processed wire vs. internal-tin processed wire). Based on simulations and experimental analyses, we suggest a brief guideline for the design of wire strand geometry to avoid columnar grain formation.-
dc.languageEnglish-
dc.publisherActa Materialia Inc-
dc.relation.isPartOfActa Materialia-
dc.titleFormation of columnar grains during diffusional growth of Nb3Sn layer and its suppression-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2023.119542-
dc.type.rimsART-
dc.identifier.bibliographicCitationActa Materialia, v.263-
dc.identifier.wosid001121710500001-
dc.citation.titleActa Materialia-
dc.citation.volume263-
dc.contributor.affiliatedAuthor오상호-
dc.contributor.affiliatedAuthorLee, Byeong-Joo-
dc.identifier.scopusid2-s2.0-85177823203-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusCRITICAL-CURRENT-DENSITY-
dc.subject.keywordPlusREACTIVE DIFFUSION-
dc.subject.keywordPlusSUPERCONDUCTING PROPERTIES-
dc.subject.keywordPlusCOMPUTER-SIMULATION-
dc.subject.keywordPlusSN-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusWIRES-
dc.subject.keywordPlusTIN-
dc.subject.keywordPlusNB-
dc.subject.keywordAuthorA15 Nb3Sn-
dc.subject.keywordAuthorCrystal growth-
dc.subject.keywordAuthorInternal-tin process-
dc.subject.keywordAuthorMicrostructure evolution-
dc.subject.keywordAuthorMonte Carlo Potts-
dc.subject.keywordAuthorSuperconducting materials-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이병주LEE, BYEONG JOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse