Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions SCIE SCOPUS

Title
Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions
Authors
Jeong DawoonBaik Min HoonJung Euo ChangKo Myoung-SooUm WooyongRyu Ji-Hun
Date Issued
2023-07
Publisher
Pergamon Press Ltd.
Abstract
Understanding the biogeochemical U redox processes is crucial for controlling U mobility and toxicity under conditions relevant to deep geological repositories (DGRs). In this study, we examined the microbial reduction of aqueous hexavalent uranium U(VI) [U(VI)aq] by indigenous bacteria in U-contaminated groundwater. Three indigenous bacteria obtained from granitic groundwater at depths of 44-60 m (S1), 92-116 m (S2), and 234-244 m (S3) were used in U(VI)aq bioreduction experiments. The concentration of U(VI)aq was monitored to evaluate its removal efficiency for 24 weeks under anaerobic conditions with the addition of 20 mM sodium acetate. During the anaerobic reaction, U(VI)aq was precipitated in the form of U(IV)-silicate with a particle size >100 nm. The final U(VI)aq removal efficiencies were 37.7%, 43.1%, and 57.8% in S1, S2, and S3 sample, respectively. Incomplete U(VI)aq removal was attributed to the presence of a thermodynamically stable calcium uranyl car-bonate complex in the U-contaminated groundwater. High-throughput 16S rRNA gene sequencing analysis revealed the differences in indigenous bacterial communities in response to the depth, which affected to the U (VI)aq removal efficiency. Pseudomonas peli was found to be a common bacterium related to U(VI)aq bioreduction in S1 and S2 samples, while two SRB species, Thermodesulfovibrio yellowstonii and Desulfatirhabdium butyr-ativorans, played key roles in the bioreduction of U(VI)aq in S3 sample. These results indicate that remediation of U(VI)aq is possible by stimulating the activity of indigenous bacteria in the DGR environment.
URI
https://oasis.postech.ac.kr/handle/2014.oak/120692
DOI
10.1016/j.envpol.2023.121674
ISSN
0269-7491
Article Type
Article
Citation
Environmental Pollution, vol. 329, 2023-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

엄우용UM, WOO YONG
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse