Open Access System for Information Sharing

Login Library

 

Article
Cited 15 time in webofscience Cited 20 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHuang Shih-Gu-
dc.contributor.authorLyu Ilwoo-
dc.contributor.authorQiu Anqi-
dc.contributor.authorChung Moo K.-
dc.date.accessioned2024-03-05T00:50:47Z-
dc.date.available2024-03-05T00:50:47Z-
dc.date.created2024-03-04-
dc.date.issued2020-06-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/120803-
dc.description.abstractHeat diffusion has been widely used in brain imaging for surface fairing, mesh regularization and cortical data smoothing. Motivated by diffusion wavelets and convolutional neural networks on graphs, we present a new fast and accurate numerical scheme to solve heat diffusion on surface meshes. This is achieved by approximating the heat kernel convolution using high degree orthogonal polynomials in the spectral domain. We also derive the closed-form expression of the spectral decomposition of the Laplace-Beltrami operator and use it to solve heat diffusion on a manifold for the first time. The proposed fast polynomial approximation scheme avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large mesh size, and the numerical instability associated with the finite element method based diffusion solvers. The proposed method is applied in localizing the male and female differences in cortical sulcal and gyral graph patterns obtained from MRI in an innovative way. The MATLAB code is available at http://www.stat.wisc.edu/similar to mchung/chebyshev.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.relation.isPartOfIEEE Transactions on Medical Imaging-
dc.titleFast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis-
dc.typeArticle-
dc.identifier.doi10.1109/TMI.2020.2967451-
dc.type.rimsART-
dc.identifier.bibliographicCitationIEEE Transactions on Medical Imaging, v.39, no.6, pp.2201 - 2212-
dc.identifier.wosid000544923000035-
dc.citation.endPage2212-
dc.citation.number6-
dc.citation.startPage2201-
dc.citation.titleIEEE Transactions on Medical Imaging-
dc.citation.volume39-
dc.contributor.affiliatedAuthorLyu Ilwoo-
dc.identifier.scopusid2-s2.0-85086139800-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

류일우Lyu, Ilwoo
Grad. School of AI
Read more

Views & Downloads

Browse