Open Access System for Information Sharing

Login Library

 

Article
Cited 30 time in webofscience Cited 34 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorGray, AX-
dc.contributor.authorJanotti, A-
dc.contributor.authorSon, J-
dc.contributor.authorLeBeau, JM-
dc.contributor.authorUeda, S-
dc.contributor.authorYamashita, Y-
dc.contributor.authorKobayashi, K-
dc.contributor.authorKaiser, AM-
dc.contributor.authorSutarto, R-
dc.contributor.authorWadati, H-
dc.contributor.authorSawatzky, GA-
dc.contributor.authorVan de Walle, CG-
dc.contributor.authorStemmer, S-
dc.contributor.authorFadley, CS-
dc.date.accessioned2015-06-25T03:07:46Z-
dc.date.available2015-06-25T03:07:46Z-
dc.date.created2013-04-11-
dc.date.issued2011-08-03-
dc.identifier.issn1098-0121-
dc.identifier.other2015-OAK-0000027459en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12250-
dc.description.abstractIn order to understand the influence of strain and film thickness on the electronic structure of thin films of strongly correlated oxides, we have applied hard x-ray photoemission (HXPS) at 6 keV, soft x-ray photoemission (XPS) at 1.5 keV, and transmission electron microscopy to epitaxial LaNiO3 films deposited on two substrates: LaAlO3 (compressive strain) and (LaAlO3)(0.3)(Sr2AlTaO6)(0.7) (tensile strain). Using inelastic attenuation lengths in LaNiO3 determined from the HXPS data, we have decomposed valence-band spectra into layer-specific contributions. This decomposition is validated by comparing with the results of first-principles calculations using a hybrid functional. The resultant thin-film LaNiO3 densities of states exhibit significant differences in spectral weights for the thinnest LaNiO3 films. A gap opening consistent with a metal-to-insulator transition is observed for the thinnest 2.7 nm LaNiO3 film on an (LaAlO3)(0.3)(Sr2AlTaO6)(0.7) substrate, with a similar gap opening also being observed in complementary soft x-ray photoemission at 1.5 keV for a thinner 1.4 nm film on an LaAlO3 substrate. A metal-to-insulator transition in very thin nm-scale films of LaNiO3 is thus suggested as a general phenomenon.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAmerical Physical Society-
dc.relation.isPartOfPhysical Review B-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleInsulating state of ultrathin epitaxial LaNiO3 thin films detected by hard x-ray photoemission-
dc.typeArticle-
dc.contributor.college신소재공학과en_US
dc.identifier.doi10.1103/PHYSREVB.84.075104-
dc.author.googleGray, AXen_US
dc.author.googleJanotti, Aen_US
dc.author.googleFadley, CSen_US
dc.author.googleStemmer, Sen_US
dc.author.googleVan de Walle, CGen_US
dc.author.googleSawatzky, GAen_US
dc.author.googleWadati, Hen_US
dc.author.googleSutarto, Ren_US
dc.author.googleKaiser, AMen_US
dc.author.googleKobayashi, Ken_US
dc.author.googleYamashita, Yen_US
dc.author.googleUeda, Sen_US
dc.author.googleLeBeau, JMen_US
dc.author.googleSon, Jen_US
dc.relation.volume84en_US
dc.relation.issue7en_US
dc.contributor.id10138992en_US
dc.relation.journalPhysical Review Ben_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPhysical Review B, v.84, no.7-
dc.identifier.wosid000293445500003-
dc.date.tcdate2019-01-01-
dc.citation.number7-
dc.citation.titlePhysical Review B-
dc.citation.volume84-
dc.contributor.affiliatedAuthorSon, J-
dc.identifier.scopusid2-s2.0-80052413180-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc22-
dc.description.scptc23*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOELECTRON ANGULAR-DISTRIBUTION-
dc.subject.keywordPlusAUGER-ELECTRON-SPECTROSCOPY-
dc.subject.keywordPlusPARAMETERS-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

손준우SON, JUNWOO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse