Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ambient PM2.5 exposure and rapid population aging: A double threat to public health in the Republic of Korea SCIE SCOPUS

Title
Ambient PM2.5 exposure and rapid population aging: A double threat to public health in the Republic of Korea
Authors
KIM, NA RAELEE, HYUNG JOO
Date Issued
2024-07
Publisher
Academic Press
Abstract
Particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) can infiltrate deep into the respiratory system, posing significant health risks. Notably, the health burden of PM2.5 is more pronounced among the older adult population. With an aging population, the public health burden attributable to PM2.5 could escalate even if the current PM2.5 level remains stable. This study evaluated the number of deaths attributable to long-term PM2.5 exposure in the Republic of Korea between 2020 and 2050 and identified the PM2.5 concentration required at least to maintain the current PM2.5 health burden. To calculate mortality for 2020–2050, we performed a health impact assessment using 3-year (2019–2021) average population-weighted PM2.5 concentrations, age-specific population and mortality rates. In 2020, 33,578 [95% confidence interval (CI) = 31,708–35,448] deaths were attributable to PM2.5 exposure. Projecting forward, if the 2019–2021 average PM2.5 level remains constant, mortality is projected to be 112,953 (95% CI = 109,963–115,943) in 2050, more than three times higher than in 2020. To maintain the same level of health burden in 2050 as in 2020, the PM2.5 concentration needs to be immediately reduced to 5.8 μg/m3. In an age-specific analysis, the proportion of older adults (ages 65+) to total mortality would increase from 83% (2020) to 96% (2050), indicating that the rising mortality is predominantly driven by the aging population. By region, the reduction of PM2.5 concentrations, which is required immediately in 2020 to have the health burden in 2050 equal to that in 2020, varied from 3.6 μg/m3 in Goheung-gun (25% reduction) to 20.8 μg/m3 in Heungdeok-gu (82% reduction). Our study emphasizes the critical need for air quality management to consider aging populations when establishing PM2.5 air quality standards, as well as their associated policies and regulations. © 2024
URI
https://oasis.postech.ac.kr/handle/2014.oak/123577
DOI
10.1016/j.envres.2024.119032
ISSN
0013-9351
Article Type
Article
Citation
Environmental Research, vol. 252, 2024-07
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이형주LEE, HYUNG JOO
Div of Environmental Science & Enginrg
Read more

Views & Downloads

Browse