Open Access System for Information Sharing

Login Library

 

Article
Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorLee, Noho-
dc.contributor.authorJang, Ho Yeon-
dc.contributor.authorShim, Kyubin-
dc.contributor.authorJung, Sang-Mun-
dc.contributor.authorLee, Jinhyeon-
dc.contributor.authorYou, Sang-Hoon-
dc.contributor.authorKang, Hye Su-
dc.contributor.authorKim, Jong Kyu-
dc.contributor.authorBack, Seoin-
dc.contributor.authorKim, Yong-Tae-
dc.date.accessioned2024-06-20T08:23:01Z-
dc.date.available2024-06-20T08:23:01Z-
dc.date.created2023-04-28-
dc.date.issued2023-01-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/123713-
dc.description.abstractConverting CO2 to useful chemicals using electrocatalytic processes is a promising technology for reducing the amount of CO2 in the atmosphere. In the previous literature on metal-based catalysts, most attempts have focused on the optimization of CO2-reduction reactions using conventional approaches, including nanostructuring and morphology or composite control, which have inefficient and sluggish reaction kinetics-associated protonation steps. In this study, we present an innovative approach for the electrochemical CO2 reduction through bifunctional effect from oxophilic metal-incorporated Ag, facilitating the CO2 protonation step. The theoretical and experimental analyses demonstrate that the high oxophilicity of Co and Ni accelerates H2O activation and proton generation, providing a protonation pathway in addition to the direct pathway of CO2 by supplying additional protons. In addition, we confirmed that the oxophilic metal can introduce adsorption sites for stabilizing COOH* adsorption, where C and O in COOH* interact with Ag and Co (or Ni) sites, respectively. Thus, the Co- and Ni-incorporated Ag catalysts show much enhanced catalytic performance compared to pure Ag with a high selectivity for CO of 91.4 and 88.47% at −1.2 vs reversible hydrogen electrode (RHE). These results, highlighting the role of oxophilic metal sites exhibiting the bifunctional effect, will provide important clues for future catalyst design rules for efficient CO2 reduction.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfACS Applied Energy Materials-
dc.titleEnhanced Activity and Selectivity for Electrochemical CO2 Reduction through Water Activation by Oxophilic Metal Deposited on Ag-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.3c00530-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.6, no.8, pp.4413 - 4421-
dc.identifier.wosid000971963500001-
dc.citation.endPage4421-
dc.citation.number8-
dc.citation.startPage4413-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume6-
dc.contributor.affiliatedAuthorLee, Noho-
dc.contributor.affiliatedAuthorShim, Kyubin-
dc.contributor.affiliatedAuthorJung, Sang-Mun-
dc.contributor.affiliatedAuthorLee, Jinhyeon-
dc.contributor.affiliatedAuthorYou, Sang-Hoon-
dc.contributor.affiliatedAuthorKang, Hye Su-
dc.contributor.affiliatedAuthorKim, Jong Kyu-
dc.contributor.affiliatedAuthorKim, Yong-Tae-
dc.identifier.scopusid2-s2.0-85152746788-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusELECTROCATALYTIC ACTIVITY-
dc.subject.keywordPlusNICKEL-OXIDE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusPOINTS-
dc.subject.keywordPlusTRENDS-
dc.subject.keywordAuthorAg catalyst-
dc.subject.keywordAuthorbifunctional effect-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthoroxophilic metal-
dc.subject.keywordAuthorwater activation-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

김종규KIM, JONG KYU
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse