Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorQuillin, Kyle-
dc.contributor.authorSasidhar, K.N.-
dc.contributor.authorQureshi, Muhammad Waqas-
dc.contributor.authorYeom, Hwasung-
dc.contributor.authorSzlufarska, Izabela-
dc.contributor.authorSridharan, Kumar-
dc.date.accessioned2024-08-28T01:40:08Z-
dc.date.available2024-08-28T01:40:08Z-
dc.date.created2024-08-07-
dc.date.issued2024-10-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/124116-
dc.description.abstractLayered metal/silicon carbide (SiC) materials systems are becoming increasingly relevant to solve materials challenges in advanced fission and fusion nuclear energy systems, necessitating a deeper understanding of how interfaces between dissimilar materials behave under high energy irradiation. In this work, we use a Cr-SiC bilayer system as a model to study the behavior of such interfaces under high energy ion irradiation (80 MeV Xe26+ ions) at elevated temperatures (similar to 350 degrees C). Through high resolution characterization of the interface, we observed the formation of a nanoscale Cr-rich amorphous layer adjacent to crystalline SiC. We explain this phenomenon through a multi-scale computational approach incorporating ballistic mixing simulations, density functional theory calculations, and CALPHAD-based non-equilibrium modeling that shows the localized amorphization of Cr to be driven by the synergistic action of irradiation-induced point defects within Cr and transport of Si and C atoms across the interface. In particular, the accumulation of radiation damage results in the thermodynamic destabilization of the point-defect containing, metastable Cr-Si-C solid solution with respect to an amorphous phase of identical composition. This study advances the understanding of how metal/SiC interfaces behave under irradiation and establishes a modeling framework that can be applied to interfacial systems to understand irradiation-induced amorphization.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.relation.isPartOfActa Materialia-
dc.titleUnusual nanoscale amorphization of metallic chromium interfacing with SiC under high energy irradiation-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2024.120236-
dc.type.rimsART-
dc.identifier.bibliographicCitationActa Materialia, v.278, pp.120236-
dc.identifier.wosid001292591900001-
dc.citation.startPage120236-
dc.citation.titleActa Materialia-
dc.citation.volume278-
dc.contributor.affiliatedAuthorYeom, Hwasung-
dc.identifier.scopusid2-s2.0-85200559968-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusSILICON-CARBIDE-
dc.subject.keywordPlusRADIATION-DAMAGE-
dc.subject.keywordPlusION-
dc.subject.keywordPlusCR-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusSDTRIMSP-
dc.subject.keywordPlusPHASES-
dc.subject.keywordAuthorAmorphization-
dc.subject.keywordAuthorInterfaces-
dc.subject.keywordAuthorRadiation damage-
dc.subject.keywordAuthorCALPHAD-
dc.subject.keywordAuthorNuclear materials-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

염화성YEOM, HWASUNG
Div. of Advanced Nuclear Enginrg
Read more

Views & Downloads

Browse