Open Access System for Information Sharing

Login Library

 

Article
Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Photon-pair generation using inverse-designed thin-film lithium niobate mode converters SCIE SCOPUS

Title
Photon-pair generation using inverse-designed thin-film lithium niobate mode converters
Authors
Kwon, KiwonHeo, HyungjunLee, DongjinKim, HyeongpinJang, Hyeong-SoonShin, WoncheolLim, Hyang-TagKim, Yong-SuHan, Sang-WookKim, SanginShin, HeedeukKwon, HyounghanJung, Hojoong
Date Issued
2024-05
Publisher
AIP Publishing LLC | American Institute of Physics
Abstract
Spontaneous parametric down-conversion (SPDC) has become a key method for generating entangled photon pairs. Periodically poled thin-film lithium niobate (TFLN) waveguides induce strong SPDC but require complex fabrication processes. In this work, we experimentally demonstrate efficient SPDC and second harmonic generation using modal phase matching methods. This is achieved with inverse-designed optical mode converters and low-loss optical waveguides in a single nanofabrication process. Inverse design methods provide enhanced functionalities and compact footprints for the converter. Despite the extensive achievements in inverse-designed photonic integrated circuits, the potential of inverse-designed TFLN quantum photonic devices has been seldom explored. The device shows an on-chip conversion efficiency of 3.95% W−1 cm−2 in second harmonic generation measurements and a coincidence count rate up to 21.2 kHz in SPDC experiments. This work highlights the potential of the inverse-designed TFLN photonic devices and paves the way for their applications in on-chip nonlinear or quantum optics.
URI
https://oasis.postech.ac.kr/handle/2014.oak/124223
DOI
10.1063/5.0192026
ISSN
2378-0967
Article Type
Article
Citation
APL Photonics, vol. 9, no. 5, 2024-05
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse