Open Access System for Information Sharing

Login Library

 

Article
Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorKim, GJ-
dc.contributor.authorIza, F-
dc.contributor.authorLee, JK-
dc.date.accessioned2015-06-25T03:21:42Z-
dc.date.available2015-06-25T03:21:42Z-
dc.date.created2010-04-28-
dc.date.issued2009-01-
dc.identifier.issn1070-664X-
dc.identifier.other2015-OAK-0000020860en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/12601-
dc.description.abstractMicroplasmas with cylindrical hollow cathode have been studied by means of two-dimensional particle-in-cell/Monte-Carlo collision (PIC/MCC) simulations. For a given input power, the onset of field emission from the cathode surface caused by the strong electric field generated in these discharges leads to a reduction of the discharge voltage and an increase in plasma density. The plasma density profile can be strongly influenced by localized enhancements of the electric field, which in turn will affect the erosion profile of the cathode. The cathode erosion profile is predicted in this work by combining the ion kinetic information obtained from the PIC/MCC simulation with the sputtering yield computed using SRIM [J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM: The Stopping and Range of Ions in Matter (Lulu, Chester, 2008)]. The entrance of the cathode and the center region are the areas most susceptible to ion-induced damage. The lifetime of the device, however, can be extended by operating the device at high pressure and by reducing the operating voltage by means of field emission and/or additional electron emitting processes from the cathode.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfPHYSICS OF PLASMAS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleField emission and lifetime of microcavity plasma-
dc.typeArticle-
dc.contributor.college전자전기공학과en_US
dc.identifier.doi10.1063/1.3068745-
dc.author.googleKim, GJen_US
dc.author.googleIza, Fen_US
dc.author.googleLee, JKen_US
dc.relation.volume16en_US
dc.relation.issue1en_US
dc.contributor.id10158178en_US
dc.relation.journalPHYSICS OF PLASMASen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationPHYSICS OF PLASMAS, v.16, no.1-
dc.identifier.wosid000262967900036-
dc.date.tcdate2019-01-01-
dc.citation.number1-
dc.citation.titlePHYSICS OF PLASMAS-
dc.citation.volume16-
dc.contributor.affiliatedAuthorLee, JK-
dc.identifier.scopusid2-s2.0-59449108868-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc3-
dc.description.scptc3*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRON-EMISSION-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusPSEUDOSPARK-
dc.subject.keywordPlusPARTICLE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusMICROPLASMAS-
dc.subject.keywordPlusDISCHARGES-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusARGON-
dc.subject.keywordAuthordischarges (electric)-
dc.subject.keywordAuthorMonte Carlo methods-
dc.subject.keywordAuthorplasma density-
dc.subject.keywordAuthorplasma simulation-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse