Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors SCIE SCOPUS

Title
Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors
Authors
Cha, HBaek, JYAn, TKKim, SOKwon, SKKim, YHPark, CE
Date Issued
2014-12
Publisher
ELSEVIER SCIENCE BV
Abstract
The morphology of a bulk heterojunction can be controlled by adding a processing additive in order to improve its power conversion efficiency (PCE) in photovoltaic devices. The phase-separated morphologies of blends of PONTBT or P3HT with fullerene derivatives are systematically examined in the presence of processing additives that possess various alkane alkyl chain lengths or end-group electronegativities. We determined the morphologies of the bulk heterojunction layers by using atomic force microscopy (AFM) and grazing incidence wide angle X-ray scattering (GIWAXS). The photocurrent-voltage characteristics of the bulk heterojunction solar cells were found to be strongly dependent on the intermolecular interactions between the conjugated polymers, the fullerene derivatives, and the processing additives in the photoactive layer. The optimal PONTBT: fullerene derivative blend morphology was obtained with a processing additive, 1,3-diiodopropane (1,3-DIP), that possesses a short alkyl chain and an end group with weak electronegativity, and was found to exhibit a high fill factor (FF) and a high current density (J(SC)). In contrast, in blends of P3HT with the fullerene derivative, PCEs with higher FF and JSC values were achieved by incorporating the processing additive, 1,8-dibromooctane (1,8-DBrO), which has a long alkyl chain and a strong electronegative end group. Thus the selection of the processing additive with the aim of enhancing photovoltaic performance needs to take into account the intermolecular interaction of the conjugated polymer. (C) 2014 Elsevier B.V. All rights reserved.
Keywords
Bulk heterojunction morphology; Processing additive; Phase separation; Electronegativity; Crystallinity; POLYMER SOLAR-CELLS; POWER CONVERSION EFFICIENCY; OPEN-CIRCUIT VOLTAGE; LOW-BANDGAP POLYMER; PHOTOVOLTAIC CELLS; INTERPENETRATING NETWORK; PHASE-SEPARATION; OPTICAL SPACER; SOLVENT; BLENDS
URI
https://oasis.postech.ac.kr/handle/2014.oak/14114
DOI
10.1016/J.ORGEL.2014.10.006
ISSN
1566-1199
Article Type
Article
Citation
ORGANIC ELECTRONICS, vol. 15, no. 12, page. 3558 - 3567, 2014-12
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

박찬언PARK, CHAN EON
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse