Open Access System for Information Sharing

Login Library

 

Article
Cited 29 time in webofscience Cited 33 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHyungdae Kim-
dc.contributor.authorEunho Kim-
dc.contributor.authorKim, MH-
dc.date.accessioned2016-03-31T08:08:24Z-
dc.date.available2016-03-31T08:08:24Z-
dc.date.created2014-03-17-
dc.date.issued2014-02-
dc.identifier.issn0017-9310-
dc.identifier.other2014-OAK-0000029572-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/14648-
dc.description.abstractRecent pool boiling heat transfer studies of nanofluids showed that nanoparticle deposit layer formed on a heater surface during nanofluid boiling can significantly increase critical heat flux (CHF). To identify the key parameter responsible for this observation, the effects of surface properties of the deposit layer on CHF of water were systemically studied, using various nanoparticle deposit layers applied to a thin wire heater by boiling in nanofluids. Different structures of nanoparticle deposits were obtained by controlling heat flux and time duration during nanofluid boiling. The deposit layers were quantitatively characterized using the surface parameters relevant to CHF phenomena, including wettability, capillarity and layer thickness. Performance of the nanoparticle deposits was then evaluated through pool boiling CHF experiments in distilled water. It was found that while wettability fails to interpret the CHF values on thin nanoparticle deposit wires, capillarity and thickness of the layers shows good correlations. It is supposed that nanoparticle deposit layer with a thickness increases pore volumes to hold liquid macrolayer and induces capillary liquid flow toward dry area underneath bubbles growing on a heater surface, thus effectively delaying occurrence of local dryout and subsequent overwhelming rise of surface temperature that is the dominant mechanism of CHF on a thin wire. (C) 2013 Elsevier Ltd. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.relation.isPartOfInternational Journal of Heat and Mass Transfer-
dc.subjectCapillarity-
dc.subjectCritical heat flux-
dc.subjectNanoparticle deposit-
dc.subjectThickness-
dc.subjectWettability-
dc.subjectCHF ENHANCEMENT-
dc.subjectNANO-FLUIDS-
dc.subjectSMALL CYLINDERS-
dc.subjectSURFACE-
dc.subjectNANOFLUIDS-
dc.subjectMECHANISM-
dc.subjectLIQUIDS-
dc.titleEffect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire-
dc.typeArticle-
dc.contributor.college첨단원자력공학부-
dc.identifier.doi10.1016/J.IJHEATMASSTRANSFER.2013.10.014-
dc.author.googleKim, H-
dc.author.googleKim, E-
dc.author.googleKim, MH-
dc.relation.volume69-
dc.relation.startpage164-
dc.relation.lastpage172-
dc.contributor.id10110703-
dc.relation.journalInternational Journal of Heat and Mass Transfer-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationInternational Journal of Heat and Mass Transfer, v.69, pp.164 - 172-
dc.identifier.wosid000329552900017-
dc.date.tcdate2019-01-01-
dc.citation.endPage172-
dc.citation.startPage164-
dc.citation.titleInternational Journal of Heat and Mass Transfer-
dc.citation.volume69-
dc.contributor.affiliatedAuthorKim, MH-
dc.identifier.scopusid2-s2.0-84887218099-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc16-
dc.description.scptc14*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusCHF ENHANCEMENT-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusNANOFLUIDS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthorCapillarity-
dc.subject.keywordAuthorCritical heat flux-
dc.subject.keywordAuthorNanoparticle deposit-
dc.subject.keywordAuthorThickness-
dc.subject.keywordAuthorWettability-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse