Open Access System for Information Sharing

Login Library

 

Article
Cited 115 time in webofscience Cited 124 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKim, TH-
dc.contributor.authorZhang, XG-
dc.contributor.authorNicholson, DM-
dc.contributor.authorEvans, BM-
dc.contributor.authorKulkarni, NS-
dc.contributor.authorRadhakrishnan, B-
dc.contributor.authorKenik, EA-
dc.contributor.authorLi, AP-
dc.date.accessioned2016-03-31T08:21:01Z-
dc.date.available2016-03-31T08:21:01Z-
dc.date.created2014-01-29-
dc.date.issued2010-08-
dc.identifier.issn1530-6984-
dc.identifier.other2010-OAK-0000028666-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/15108-
dc.description.abstractCopper is the current interconnect metal of choice in integrated circuits. As interconnect dimensions decrease, the resistivity of copper increases dramatically because or electron scattering from surfaces, impurities, and grain boundaries (GBs) and threatens to stymie continued device scaling. Lacking direct measurements of individual scattering sources, understanding of the relative importance of these scattering mechanisms has largely relied on semiempirical modeling. Here we present the first ever attempt to measure and calculate individual GB resistances in copper nanowires with a one-to-one correspondence to the GB structure. Large resistance jumps are directly measured at the random GBs with a value far greater than at coincidence GBs and first-principles calculations. The high resistivity of the random GB appears to be intrinsic, arising from the scaling of electron mean free path with the size of the lattice relaxation region. The striking impact of random GB scattering adds vital information for understanding nanoscale conductors.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfNano Letters-
dc.subjectGrain boundary-
dc.subjectresistance-
dc.subjectcopper-
dc.subjectinterconnect-
dc.subjectfour-probe measurement-
dc.subjectscanning tunneling microscope-
dc.subjectELECTRICAL-RESISTIVITY-
dc.subjectMETALLIC-FILMS-
dc.subjectCONDUCTIVITY-
dc.subjectINTERCONNECTS-
dc.subjectTRANSMISSION-
dc.subjectMULTILAYERS-
dc.subjectREFLECTION-
dc.subjectDIMENSIONS-
dc.subjectTRANSPORT-
dc.subjectMODEL-
dc.titleLarge Discrete Resistance Jump at Grain Boundary in Copper Nanowire-
dc.typeArticle-
dc.contributor.college물리학과-
dc.identifier.doi10.1021/NL101734H-
dc.author.googleKim, TH-
dc.author.googleZhang, XG-
dc.author.googleNicholson, DM-
dc.author.googleEvans, BM-
dc.author.googleKulkarni, NS-
dc.author.googleRadhakrishnan, B-
dc.author.googleKenik, EA-
dc.author.googleLi, AP-
dc.relation.volume10-
dc.relation.issue8-
dc.relation.startpage3096-
dc.relation.lastpage3100-
dc.contributor.id10127399-
dc.relation.journalNano Letters-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationNano Letters, v.10, no.8, pp.3096 - 3100-
dc.identifier.wosid000280728900061-
dc.date.tcdate2019-01-01-
dc.citation.endPage3100-
dc.citation.number8-
dc.citation.startPage3096-
dc.citation.titleNano Letters-
dc.citation.volume10-
dc.contributor.affiliatedAuthorKim, TH-
dc.identifier.scopusid2-s2.0-77955566832-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc65-
dc.description.scptc62*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRICAL-RESISTIVITY-
dc.subject.keywordPlusMETALLIC-FILMS-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusINTERCONNECTS-
dc.subject.keywordPlusTRANSMISSION-
dc.subject.keywordPlusMULTILAYERS-
dc.subject.keywordPlusREFLECTION-
dc.subject.keywordPlusDIMENSIONS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorGrain boundary-
dc.subject.keywordAuthorresistance-
dc.subject.keywordAuthorcopper-
dc.subject.keywordAuthorinterconnect-
dc.subject.keywordAuthorfour-probe measurement-
dc.subject.keywordAuthorscanning tunneling microscope-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse