Open Access System for Information Sharing

Login Library

 

Article
Cited 45 time in webofscience Cited 49 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorWoosung Kwon-
dc.contributor.authorSungan Do-
dc.contributor.authorDong Chan Won-
dc.contributor.authorRhee, SW-
dc.date.accessioned2016-03-31T08:47:15Z-
dc.date.available2016-03-31T08:47:15Z-
dc.date.created2013-02-25-
dc.date.issued2013-02-13-
dc.identifier.issn1944-8244-
dc.identifier.other2013-OAK-0000026537-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/16048-
dc.description.abstractWe report electrical measurements of films of carbon quantum dots (CQDs) that serve as the channels of field-effects transistors (FETs). To investigate the dependence of the field-effect mobility on ligand length, colloidal CQDs are synthesized and ligand-exchanged with several primary amines of different ligand lengths. We measure current as a function of gate voltage and find that the devices show ambipolar conductivity, with electron and hole mobilities as high as 8.49 X 10(-5) and 3.88 X 10(-5) cm(2) V-1 s(-1) respectively. The electron mobilities are consistently 2-4 times larger than the hole mobilities. Furthermore, the mobilities decrease exponentially with the increase of the ligand length, which is well-described by the Miller-Abrahams model for nearest-neighbor hopping. Our results provide a theoretical basis to examine charge transport in CQD films and offer new prospects for the fabrication of high-mobility CQD-based optoelectronic devices, including solar cells, light-emitting devices, and optical sensors.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS Applied Materials & Interfaces-
dc.subjectcarbon quantum dots-
dc.subjectmobility-
dc.subjectligand exchange-
dc.subjectligand length-
dc.subjectemulsion template-
dc.subjectfield-effect transistors-
dc.subjectONE-STEP SYNTHESIS-
dc.subjectMOLECULAR JUNCTIONS-
dc.subjectNANOCRYSTALS-
dc.subjectNANOPARTICLES-
dc.subjectGRAPHITE-
dc.subjectSOLIDS-
dc.subjectPHOTOLUMINESCENCE-
dc.subjectNANODOTS-
dc.subjectFILMS-
dc.subjectSOOT-
dc.titleCarbon Quantum Dot-Based Field-Effect Transistors and Their Ligand Length-Dependent Carrier Mobility-
dc.typeArticle-
dc.contributor.college화학공학과-
dc.identifier.doi10.1021/AM3023898-
dc.author.googleKwon W., Do S., Won D.C., Rhee S.-W.-
dc.relation.volume5-
dc.relation.issue3-
dc.relation.startpage822-
dc.relation.lastpage827-
dc.contributor.id10052631-
dc.relation.journalACS Applied Materials & Interfaces-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.5, no.3, pp.822 - 827-
dc.identifier.wosid000315079700048-
dc.date.tcdate2019-01-01-
dc.citation.endPage827-
dc.citation.number3-
dc.citation.startPage822-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume5-
dc.contributor.affiliatedAuthorRhee, SW-
dc.identifier.scopusid2-s2.0-84873673441-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc22-
dc.description.scptc24*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusONE-STEP SYNTHESIS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusNANODOTS-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordAuthorcarbon quantum dots-
dc.subject.keywordAuthormobility-
dc.subject.keywordAuthorligand exchange-
dc.subject.keywordAuthorligand length-
dc.subject.keywordAuthoremulsion template-
dc.subject.keywordAuthorfield-effect transistors-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Views & Downloads

Browse