Open Access System for Information Sharing

Login Library

 

Article
Cited 53 time in webofscience Cited 54 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorJin Woo Lee-
dc.contributor.authorLee, MG-
dc.contributor.authorBarlat, F-
dc.contributor.authorJi Hoon Kim-
dc.date.accessioned2016-03-31T08:51:50Z-
dc.date.available2016-03-31T08:51:50Z-
dc.date.created2012-09-22-
dc.date.issued2012-11-
dc.identifier.issn0045-7825-
dc.identifier.other2012-OAK-0000026211-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/16198-
dc.description.abstractNumerical formulations and implementation of stress integration algorithms in the elasto-plastic finite element method are provided for the homogeneous yield function-based anisotropic hardening (HAH) model. This model is able to describe complex material behavior under non-monotonic loading conditions. Two numerical algorithms based on the semi-explicit and fully implicit schemes are compared in terms of accuracy. To efficiently treat the yield locus distortion when the strain path changes, a multi-step Newton-Raphson method is proposed to calculate the first and second derivatives of the HAH yield surface. For the validation of the developed numerical algorithms, the r-value anisotropy is compared for the conventional yield model with classical isotropic hardening and for the HAH model. Moreover, detailed error analysis is presented using iso-error maps. The results show that the fully implicit stress integration algorithm based on the closet point projection method leads to better accuracy in general. However, the semi-explicit algorithm also provides comparable accuracy if an appropriate time increment is chosen. Furthermore in spite of the yield surface distortion, the developed numerical algorithms can successfully update stress with the equivalent level of the error for the conventional yield model. (C) 2012 Elsevier B.V. All rights reserved.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.subjectElasto-plasticity-
dc.subjectStress integration algorithm-
dc.subjectAnisotropic hardening-
dc.subjectIso-error map-
dc.subjectClosest point projection method-
dc.subjectCutting plane algorithm-
dc.subjectSPRING-BACK EVALUATION-
dc.subjectELASTOPLASTIC CONSTITUTIVE RELATIONS-
dc.subjectINCREMENTAL DEFORMATION-THEORY-
dc.subjectYIELD FUNCTIONS-
dc.subjectSTRAIN-PATH-
dc.subjectMETAL PLASTICITY-
dc.subjectFORMING SIMULATIONS-
dc.subjectCYCLIC PLASTICITY-
dc.subjectSHEETS-
dc.subjectELEMENT-
dc.titleStress integration schemes for novel homogeneous anisotropic hardening model-
dc.typeArticle-
dc.contributor.college철강대학원-
dc.identifier.doi10.1016/J.CMA.2012.07.013-
dc.author.googleLee, J-
dc.author.googleLee, MG-
dc.author.googleBarlat, F-
dc.author.googleKim, JH-
dc.relation.volume247-
dc.relation.startpage73-
dc.relation.lastpage92-
dc.contributor.id10200290-
dc.relation.journalCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.247-248, pp.73 - 92-
dc.identifier.wosid000310944400006-
dc.date.tcdate2019-01-01-
dc.citation.endPage92-
dc.citation.startPage73-
dc.citation.titleCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.citation.volume247-248-
dc.contributor.affiliatedAuthorLee, MG-
dc.contributor.affiliatedAuthorBarlat, F-
dc.identifier.scopusid2-s2.0-84866304017-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc22-
dc.description.scptc18*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusSPRING-BACK EVALUATION-
dc.subject.keywordPlusELASTOPLASTIC CONSTITUTIVE RELATIONS-
dc.subject.keywordPlusINCREMENTAL DEFORMATION-THEORY-
dc.subject.keywordPlusYIELD FUNCTIONS-
dc.subject.keywordPlusSTRAIN-PATH-
dc.subject.keywordPlusMETAL PLASTICITY-
dc.subject.keywordPlusFORMING SIMULATIONS-
dc.subject.keywordPlusCYCLIC PLASTICITY-
dc.subject.keywordPlusSHEETS-
dc.subject.keywordPlusELEMENT-
dc.subject.keywordAuthorElasto-plasticity-
dc.subject.keywordAuthorStress integration algorithm-
dc.subject.keywordAuthorAnisotropic hardening-
dc.subject.keywordAuthorIso-error map-
dc.subject.keywordAuthorClosest point projection method-
dc.subject.keywordAuthorCutting plane algorithm-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

BARLAT FREDERIC GERARDBARLAT, FREDERIC GERARD
Ferrous & Energy Materials Technology
Read more

Views & Downloads

Browse