Open Access System for Information Sharing

Login Library

 

Article
Cited 262 time in webofscience Cited 279 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorKang, E-
dc.contributor.authorJung, YS-
dc.contributor.authorKim, GH-
dc.contributor.authorChun, J-
dc.contributor.authorWiesner, U-
dc.contributor.authorDillon, AC-
dc.contributor.authorKim, JK-
dc.contributor.authorLee, J-
dc.date.accessioned2016-03-31T09:15:54Z-
dc.date.available2016-03-31T09:15:54Z-
dc.date.created2011-12-01-
dc.date.issued2011-11-22-
dc.identifier.issn1616-301X-
dc.identifier.other2012-OAK-0000024631-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/16914-
dc.description.abstractA mesostructured spinel Li4Ti5O12 (LTO)-carbon nanocomposite (denoted as Meso-LTO-C) with large (>15 nm) and uniform pores is simply synthesized via block copolymer self-assembly. Exceptionally high rate capability is then demonstrated for Li-ion battery (LIB) negative electrodes. Polyisoprene-block-poly(ethylene oxide) (PI-b-PEO) with a sp2-hybridized carbon-containing hydrophobic block is employed as a structure-directing agent. Then the assembled composite material is crystallized at 700 degrees C enabling conversion to the spinel LTO structure without loss of structural integrity. Part of the PI is converted to a conductive carbon that coats the pores of the Meso-LTO-C. The in situ pyrolyzed carbon not only maintains the porous mesostructure as the LTO is crystallized, but also improves the electronic conductivity. A Meso-LTO-C/Li cell then cycles stably at 10 C-rate, corresponding to only 6 min for complete charge and discharge, with a reversible capacity of 115 mA h g-1 with 90% capacity retention after 500 cycles. In sharp contrast, a Bulk-LTO/Li cell exhibits only 69 mA h g-1 at 10 C-rate. Electrochemical impedance spectroscopy (EIS) with symmetric LTO/LTO cells prepared from Bulk-LTO and Meso-LTO-C cycled in different potential ranges reveals the factors contributing to the vast difference between the rate-capabilities. The carbon-coated mesoporous structure enables highly improved electronic conductivity and significantly reduced charge transfer resistance, and a much smaller overall resistance is observed compared to Bulk-LTO. Also, the solid electrolyte interphase (SEI)-free surface due to the limited voltage window (>1 V versus Li/Li+) contributes to dramatically reduced resistance.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.relation.isPartOfADVANCED FUNCTIONAL MATERIALS-
dc.subjectTRANSITION-METAL OXIDES-
dc.subjectMOLECULAR-SIEVES-
dc.subjectANODE MATERIAL-
dc.subjectELECTROCHEMICAL-BEHAVIOR-
dc.subjectHIGH-POWER-
dc.subjectLI4TI5O12-
dc.subjectSPINEL-
dc.subjectINSERTION-
dc.subjectINTERCALATION-
dc.subjectINTERPHASE-
dc.titleHighly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method-
dc.typeArticle-
dc.contributor.college화학공학과-
dc.identifier.doi10.1002/ADFM.201101123-
dc.author.googleKang, E-
dc.author.googleJung, YS-
dc.author.googleKim, GH-
dc.author.googleChun, J-
dc.author.googleWiesner, U-
dc.author.googleDillon, AC-
dc.author.googleKim, JK-
dc.author.googleLee, J-
dc.relation.volume21-
dc.relation.issue22-
dc.relation.startpage4349-
dc.relation.lastpage4357-
dc.contributor.id10138815-
dc.relation.journalADVANCED FUNCTIONAL MATERIALS-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.21, no.22, pp.4349 - 4357-
dc.identifier.wosid000297097900019-
dc.date.tcdate2019-01-01-
dc.citation.endPage4357-
dc.citation.number22-
dc.citation.startPage4349-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume21-
dc.contributor.affiliatedAuthorKim, JK-
dc.contributor.affiliatedAuthorLee, J-
dc.identifier.scopusid2-s2.0-81555229442-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc194-
dc.description.scptc187*
dc.date.scptcdate2018-05-121*
dc.type.docTypeArticle-
dc.subject.keywordPlusTRANSITION-METAL OXIDES-
dc.subject.keywordPlusMOLECULAR-SIEVES-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusELECTROCHEMICAL-BEHAVIOR-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusLI4TI5O12-
dc.subject.keywordPlusSPINEL-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusINTERPHASE-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이진우LEE, JIN WOO
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse