Open Access System for Information Sharing

Login Library

 

Article
Cited 12 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical Study of Planar Solid Oxide Fuel Cell during Heat-up and Start-up Operation SCIE SCOPUS

Title
Numerical Study of Planar Solid Oxide Fuel Cell during Heat-up and Start-up Operation
Authors
Kim, YSon, MLee, IB
Date Issued
2011-02-02
Publisher
ACS
Abstract
Solid oxide fuel cells (SOFCs) consist of ceramic materials. Because of the brittle nature of ceramics, durability decrease of a SOFC system or mechanical failure of cells can be caused by transient behavior, that is, sudden temperature variation and axial temperature gradient. Therefore, it is important to understand the transient behavior of a SOFC. To study the transient behavior of a direct internal reforming (DIR) planar solid oxide fuel cell (SOFC), a one-dimensional dynamic model is presented. This model is modified to predict the heat-up and start-up behavior. The heat-up time and start-up time are calculated from the model. The heat-up time can be adjusted by manipulating air velocity and temperature. During the start-up mode, the effects of initial temperature of the PEN (positive electrode/electrolyte/negative electrode) structure and air temperature are investigated. The fuel cell characteristics such as cell voltage, current density distribution, and temperature distribution can be calculated from the modified dynamic model. Consequently, this model can be useful to investigate the transient behavior during heat-up and start-up modes.
Keywords
THERMAL-STRESS ANALYSIS; STEADY-STATE; MODEL; SOFC; SIMULATION; SYSTEM; PERFORMANCE
URI
https://oasis.postech.ac.kr/handle/2014.oak/25121
DOI
10.1021
ISSN
0888-5885
Article Type
Article
Citation
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 50, no. 3, page. 1360 - 1368, 2011-02-02
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

이인범LEE, IN BEUM
Dept. of Chemical Enginrg
Read more

Views & Downloads

Browse